%

SUMMARY REPORT
IESD-COMP-1171

AMTRAN DEVELOPMENT PROGRAM

AMTRAN SYSTEM DESIGN AND SOFTWARE DESCRIPTION

M. E. Dyer

May 1970

Prepared For

COMPUTATION LABORATORY
GEORGE C. MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA

Contract No. NAS8-20415

Prepared By

SCIENCE AND ENGINEERING
TELEDYNE BROWN ENGINEERING
HUNTSVILLE, ALABAMA

ABSTRACT

This report contains a detailed descripf.ion of the software
developed by Teledyne Brown Engineering to implement the AMTRAN
(Automatic Mathematical Translation) language on the IBM 1130 com-
puter with 8K of core. Included are a description of the language and

full documentation of the software system.

Approved:

R. R. Parker, Ph.D.
Manager
Data Processing Laboratories

iii/iv

1.

2,

TABLE OF CONTENTS

SYSTEM DESCRIPTION . . .

1'1

AMTRAN Capabilities.

1.2 General Design Concepts

1.3 Environment and Limitations

SYSTEM SPECIFICATIONS . .

L

2.1 Input/Output Description - AMTRAN Language.

2.3

2.1.1 Arithmetic Expressions.

20 1.2

2.1.5
2. 1.6
Design Concepts . . .
Functional Description
2.3.1 Program ITZ .
2.3.,2 Subsystem 1. .
2.3.3 Subsystem 2. .
2.3.4 Subsystem 3 . .
2.3.5 Subsystem 4. .

2.3.6 Program LST .

Program Call Statement.

Assignment Statement. . .

Program Logic Control Statements

Input/Output Statements.

@

®

System Control and Utility Statements

Page

10
14
14
16
16
18
18
27
27
27
27
29
29

29

TABLE OF CONTENTS

2.4 System Data Base ., . . o

2.4.1 FORTRAN COMMON

2.4,2 Disk Files., « « « o

3., SUBSYSTEM DESCRIPTIONS . . .
3,1 Subsystem 1. « ¢ o & s

3.1, 1 Normal Initialization

Continued

3.1.2 Program Control Commands.

3,1,3 Data Area Control Commands

3.2 Subsystem 2. ¢ o o o o o
3.2.1 RESET « .
3.2.2 SUPPRESS or CARD
3.2.3 END . ¢« & o o o o
3.2.4 NAME. . ¢ ¢« « o o
3.2.5 EDIT . o « ¢ & o o
3.2.6 LIST or EXPLAIN .
3.2.7 DELETE or SAVE .

3.3 Subsystem 3. « + « o o

3.4 Subsystem 4. ¢« ¢ ¢ & s @

4, PROGRAM DESCRIPTIONS . . . &

4,1 Program CTL . . . « « =«

4,2 Program ITZ . . « « » =

vi

Page
30
30
42
45
45
45
47
49
49
51
52
52
52
52
52
52
53
53
59
59

60

4.3

4.4

4.6

TABLE OF CONTENTS - Continued

Subsystem 1. . . 4 ¢ ¢« ¢ ¢ ¢ s s o o
4.3.1 Program RST . . ¢« ¢ o o o » o
4,3.2 Program NAM . . & & o« « o o »
4.3,3 Program EDT . . . ¢« &4 o « « »
4,3.4 Program DLT . o o & o« o « o
Subsystem 2. . . ¢ ¢« 4« 4 o s e o o o
4.4.1 Program RDLL . . ¢ o o o o o
4,4.2 Program SCA . . o s o o o o =
4,4.3 Program SCB . . ¢ o « o o o o
Subsystem 3. ¢« ¢« ¢ ¢ &« . e ¢ s o o e
4.5.1 Program STK . . « ¢« « &« o o &
4,5.2 Program CDR . . . o « & o o &
Subsystem 4. ¢« « o « o« o o o s o o
4,6.1 Data Referencing System
4,6.2 Storage Allocation . « « « o« o o
4,6.3 Program GETOP . . . « ¢ « =
4,6.4 Program RTN . « o ¢ ¢ o s &
4,6.5 Program JMP ., . . . « o & » .
4,6,6 Program STV . . « ¢« o o o o &
4.6.7 Program WRT . . ¢ ¢ & s « s &

4,6.8 Program LSG . . o « s s o o

vii

Page
62
62
68
72
74
77
77
83
91

104
104
109
117
117
120
120
120
125
129
133

135

TABLE OF CONTENTS - Continued

Page

4.6.9 Program TRG . ¢« o o o o o ¢ s s o o 141

4.6.10 Program TAB. . ¢ o s o o o s o o o o 144
4,7 Program LST ¢ ¢ s o o s s s s s s o o s o 147
4,7.1 LIST Program Name o s o o « o o o o o 149
4,7.2 EXPLAIN System Label. o« ¢ ¢« s« s o o o 150
4.7.3 LISTALL . . ¢« « s s o s o s o s s o 150
4.8 Service Subprograms . . o« o o ¢ o o o s o o 150

4,8.1 Subprogram KYBRD . . « & o ¢« s o ¢ & 150
4.8.2 Subprogram TYPAM . . s s o o s ¢ o o 151
4.8.3 Subprogram SERCH. . « ¢ s o « s ¢ o 154

4. 80 4 Subprogram AJS ® L] L] L] L] e L) e [® L] @ 156

4.8.5 Subprogram GET. o o « o o s s s o o » 158
4,8,6 Subprogram GARB « & « o o o o o o o o 161
4.8.7 Subprogram FRE. ¢ « ¢« ¢ « ¢ ¢« o« o o = 163
4.8.8 Subprogram MOV. . . &« o o« ¢« & o o o & 163
4,8.9 Subprogram SHF . « ¢ s s o s o s o o = 164
4,9 File Initialization Programs. . « « o s o s o o 164
4,9.1 Program INTL3 . . o ¢ ¢ o s s o o o o 164
4.9,2 Program ALT5. ¢ ¢ ¢ ¢ o o o o o s + o 165
4.9,3 Program ALTB5A . + ¢ & s o s o o o s & 167
4,10 Modified 1130 Library Subroutines . « o o « o 168

viii

TABLE OF CONTENTS - Concluded

Page
APPENDIX A, ERRORMESSAGES . . o ¢« o s s o o o o 169
APPENDIX B, PROGRAM LISTINGS . ¢« « ¢ « o « o s 175

ix/x

Figure

1-1

2.2

2-3

3.2
3-3

3-4

4-6
4-7

4-8

4-10
4-11
4-12

4-13

LIST OF ILLUSTRATIONS

Title

General System Organization.

Internal Format for User Programs

Internal Storage Organization

System Functional Flow Chart .

Subsystem 1

Subsystem 2 . . .
Subsystem 3 o o .
Subsystem 4 &
Program ITZ, &
Program RST. &
Program NAM
Program EDT . . . ¢« & & &
Program DLT
Program RDLL. o « « « & &
Program SCA
Program SCB . . « . « « &
Program STK . . « . « o &
Program CDR . . « « « o =«
Variable Referencing System.
Program GETOP . . .

Program RTN . . « . « &

xi

Page

25
26
28
46
50
54
57
61
63
69
73
75
78
84
95
105
110
119
121

123

Figure
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25

4-26

LIST OF ILLUSTRATIONS - Concluded

Title
Program JMP . . .
Program STV . . .
Program WRT .
Program LSG . . .
Program TRG
Program TAB . .
Program LST. . . .
Subprogram KYBRD.
Subprogram TYPAM
Subprogram SERCH
Subprogram AJS .
Subprogram GET . .

Subprogram GARB .

xii

Page
126
130
134
137
142'
145
148
151
153
155
157
160

162

Table

2-2

2-3

2-4

4-2

4-3

4-5

4-6

A-1

A2

Array Construction and Manipulation Operations

LIST OF TABLES

Title

Input/Output Statements . . . ¢« + ¢ &« « o & &

System Control and Utility Commands.

Interpreter Instructions .

L]

Program Construction Information Read or Write
Requirements.

. » *

AMTRAN Character Set and Codes .

System Label Table. . .

Operator and Delimiter Codes Output By Program

SCB. .

System Constants and Reference Numbers. . .

Characters and Corresponding Codes Used By

Program STV

* L] L]

Error Numbers and Messages .

Error Messages Requested By Programs in the

System

xiii/xiv

»

Page
13
17
19

21

66-
80

87

93

97

131

170

172

1. SYSTEM DESCRIPTION

Automatic Mathematical Translation (AMTRAN) is a conversa-
tional mode computing language oriented toward the solution of mathe-
matical problems. The personnel of Brown Engineering Company, Inc.,
have implemented a version of AMTRAN on a small general purpose
computer providing conversational interaction with the user through the

console keyboard/printer.

The AMTRAN system features a well defined, easily learned
syntax and provides automatic array arithmetic and dimensioning of
variables. In the conversational mode, as each AMTRAN statement is
entered into the system, it is interpretively executed. The system
performs checks for syntax and execution errors. The features of
automatic array arithmetic and automatic variable dimensioning allow
the user to construct generalized algorithms which do not require altera-
tions when applied to new data sets. Algorithms and functions may be
constructed by the user and stored by name in the system. User
programs may be constructed in the conversational mode or entered
into the system for later use without being executed as they are entered.
At any time, user programs may be called for execution or may be
altered or deleted by the user. The AMTRAN language provides a clear,
concise method for declaring parameters and passing parameters to

programs and functions.

The AMTRAN software system provides dynamic storage alloca-
tion for data and user defined programs and functions, is modularized
into logical core loads, contains a disk core overlay system, and is

designed to facilitate extensions to the system.

1.1 AMTRAN CAPABILITIES

The AMTRAN system recognizes 50 characters and 56 reserved
words. These provide the user with the following five types of state-

ments:

Assignment

Program logic control
Program call

Input/output

System control and utility.

The user is not restricted to entering a single statement at a time but
may combine any of the first four classes of statements to form a large'r
programming unit, When combined, these statements are referred to as

substatements and are separated by commas.

Computation is specified by arithmetic expressions designed to
resemble algebraic expressions. The arithmetic operations provided

are

Exponentiation
Negation
Multiplication
Division

Addition
Subtraction
Concatenation
Less than

Greater than
Equal

Not equal

Less than or equal
Greater than or equal.

The following standard arithmetic functions may be used:

@ Trigonometric sine

® Trigonometric cosine
e Natural logarithm

® Square root

® Arctangent

e Hyperbolic tangent
@ Absolute value

® Exponential.

Computation is performed in floating point. Arithmetic operands may
be scalars or arrays, provided the dimensions are consistent. Addi-
tional arithmetic functions have been included in the system to facilitate

array arithmetic. The array subscripting capabilities allow reference

to a single element or to contiguous elements.

The dimension of a variable may be dynamic in a program. The
automatic dimensioning of variables is provided by the assignment state‘-
ment. A variable appearing to the left of the equal sign in the assignment
statement will assume the dimension of the result of the computation
designated by the expression to the right of the equal sign. Only the

exact amount of storage currently required for a variable is allocated.

The control of the logical flow of a user algorithm is provided
by an unconditional branch, an iterative statement, and an IF statement.
The IF statement consists of a conditional, a then, and an else clause.
The then and else clauses may consist of several substatements including

additional IF tests.,

The program call statements provide the communication between

user programs.

The input/output statements allow the input and output of data
and user programs. Data input may be in free form; however, program

input and output and data output are in a standard format.

The system control statements allow the user to name, store,
and delete programs, to save or delete data, and to change the mode of

statement entry to the system.

1.2 GENERAL DESIGN CONCEPTS

A principal objective in the design of the AMTRAN software was
to optimally divide internal storage between the system software and the
user storage areas, in order to maintain an effective balance between
execution speed and internal storage available to the user. To meet this
objective, two major design concepts were implemented.

@ The input statement in the AMTRAN language is translated to
a concise form which is then interpreted and executed.

® The system software is modularized into logical core loads so
that only the module or modules necessary for the completion
of a specific task or set of tasks need be in core at any particu-
lar time during execution of the system.
The internal form in which an AMTRAN statement is executed is
patterned after a machine language with distinct operator codes and
none or several operands for each operator. The internal structure of
a user program, whether stored or under construction, is in a standard
format and is completely relocatable. When stored programs (stored on
disk) are executed, it is this form of the program which is brought into

core for execution, not the source form of the program which remains

on disk.

The various modules of the software system may be grouped into
the primary functional units shown in Figure 1-1 and described below.
@ System Control - This portion of the system controls the over-

all flow of execution between the various modules of the system
and regulates the disk core overlay system.

® Incremental Translation - This portion of the system scans
and parses the input statement, performs syntax checks, and
generates the executable interpreter instructions.

@ Execution - This portion of the system performs interpretive
execution of the generated interpreter instructions and the core
storage allocation for data and for user programs when executed.

SPECIAL SYSTEM
FUNCTIONS UNDER
USER CONTROL

T

SYSTEM $| INCREMENTAL
CONTROL TRANSLATION
M
EXECUTION

FIGURE 1-1.

GENERAL SYSTEM ORGANIZATION

® Special System Functions under User Control - This portion of
the system controls the storage, deletion, listing, and editing
of user programs, the listing of user program names, the
change of statement entry mode of the system, and the dele-
tion or retention of user defined variables.

A major feature of the software system is the storage allocation
for data. This allocation is a continuous process throughout execution of
the interpreter instructions. Storage for user variables, temporary
results, and the system accumulator is provided in one internal storage
data area. Storage for any data type is allocated only as needed and in
the exact amounts required during execution, is redimensioned as neces-
sary, and, in the case of temporary storage, is made available for further

use as soon as possible.

1.3 ENVIRONMENT AND LIMITATIONS

The AMTRAN system described is implemented on an IBM 1130
computer with 8K (16 bit words) of core storage. This computer contains
a console typewriter/printer and a single disk drive and uses a card
reader/punch and printer., The software system was written mainly in
IBM 1130 FORTRAN 1V with some 1130 Assembler language programs
and is operational under Version II of the IBM 1130 Disk Monitor System.

Within the system, a user program must be written within the

following limitations:

e Maximum of 45 statements (not to exceed 153 interpreter
instructions)

& Maximum of 29 variables

® Maximum of 54 distinct constants, excluding the integers zero
through ten)

e Maximum of 10 distinct user programs called.

The system will allow the storage of a maximum of 95 user programs.
User programs may be called 10 levels deep. Data storage for user
defined variables, temporary storage, and the system accumulator

contains 604 floating point words.

A version of AMTRAN is being developed on an IBM 1130 with
16k of core which provides the graphic display of data and alphanumeric
information, an extended operator set, and relaxation of the restrictions

imposed in the 8k implementation.

7/8

2. SYSTEM SPECIFICATIONS

The system specifications describe the final software system
and include descriptions of the AMTRAN language, the design concepts,
the functional organization of the software, and the system data base.
Because the software was developed as a research project, the AMTRAN
language was, in part, initially specified and was later extended as the
software system was developed. A design concepts section is included
in the specifications to present those concepts which underly the system
software design, but which are not apparent in the functional organiza-
tion of the system. The functional description of the system provides an
overview of the functions performed by the system and of their interrela-
tionshipé. The system data base is the collection of all data used by

more than one program in the system.

2.1 INPUT/OUTPUT DESCRIPTION - AMTRAN LANGUAGE

This description is intended to present the basic concepts of the
AMTRAN language and the characteristics of the AMTRAN syntax to
allow understanding of the system software documentation. A detailed
explanation of the AMTRAN language is provided by the users' manual
("AMTRAN Users' Manual', Brown Engineering Interim Report IESD-
COMP-1103, March 1970).

The AMTRAN language allows the use of the character set
{0123456789ABCDEFGHIJKLMNOPQRSTUVW
XYZ*/+-()., &; # $ blank} and a set of 56 reserved words. The
alphanumeric characters are used to form numeric constants and labels.
Numeric constants are entered as a string of digits with a minus sign to
indicate a negative number. A decimal point is optional for integer
quantities. An AMTRAN label consists of an alphabetic character
followed by from zero to five characters which may be either alphabetic

or numeric. No special characters or blanks are allowed in a label.

Labels are used as user program names, reserved system labels, and

variable names which symbolically reference scalar or array quantities.

Labels, numeric constants, and special characters are combined
to form AMTRAN program statements. An AMTRAN program statement
consists of a decimal statement number which is output by the system and
a string of input characters terminated by a period and an EOF. Each
program statement may consist of one or more AMTRAN statements.

The AMTRAN statements may be grouped into the following types:
Assignment

Program logic control

Program call

Input/output
System control and utility.

With only a few exceptions, the user may combine statements of the
first four types to form a program statement. When combined, these
statements are referred to as substatements and are separated by

commas.

2.1.1 Arithmetic Expressions

Computation in AMTRAN is specified by arithmetic expressions
designed to resemble algebraic expressions. Arithmetic expressions
are used in the assignment statement, the IF statement, and in several
of the output statements. A wide range of computational capability is
provided by the following types of AMTRAN operators:

® Arithmetic operations

® Mathematical functions

@ Special operations for array construction and manipulation

e User defined arithmetic functions

& Subscripting

& Relational operations.

2.1.1.,1 Arithmetic Operations - The following arithmetic opera-

tions are provided in AMTRAN:

10

® * or implied - multiplication

e / - division

® + - addition

® - - subtraction

® ** or POW - exponentiation.

The arithmetic symbol or label separates the two arguments.
The operations can be performed between constants, variables, or
expressions in the following combinations:

® Two scalars

® A scalar and an array of n elements

® An array of n elements and a scalar

® Two arrays, each with n elements.
An operation performed on the first combination will result in a scalar;

an operation performed on each of the remaining combinations will result

in an array of n elements.

The result of an operation between arrays is obtained by perform-
ing the operation between corresponding elements of the arrays. When
one argument is a scalar, the operation is performed between the scalar
and each element of the array. An error condition occurs when an arith-

metic operation is attempted between arrays of different lengths.

2.1.1.2 Mathematical Functions - The following mathematical

functions may be used in AMTRAN:

SIN - trigonometric sine
COS - trigonometric cosine
LN - natural logarithm
EXP - argument power of e
SQRT - square root

ATAN - arctangent

ABS - absolute value
TANH - hyperbolic tangent
SQ - quantity squared.

Each of these functions requires one argument which may be either a
constant, a variable, or an expression and which is entered after the

label, except for SQ which requires the argument to precede the label.

11

The argument may be a scalar or an array; the function value will be a
scalar or an array the same size as the argument. The result of a func-
tion performed on an array is obtained by applying the function to each

element of the array.

2.1.1.3 Special Operations for Array Construction and Manipula-

tion - The array arithmetic provided by the arithmetic operations and

mathematical functions is augmented by the special operations described

in Table 2-1.

2.1.1.4 User Defined Arithmetic Functions - A user may desig-

nate a sequence of statements to be a program using the NAME statement
(see Table 2-3). To designate a functional program, the program name
used in the NAME statement is the same as a variable defined in the
program. A functional program is called for execution by entering the
name followed by the parameters required. The value of the function

is the current value of the corresponding variable when the return is

made from the program.

2.1.1.5 Subscripting - Arrays are one-dimensional and are

subscripted using the operator SUB to reference a single element or
contiguous elements. The operator may be used in the following forms
where x denotes an array variable or expression and a and b denote
scalar constants, variables, or expressions:

e x SUB a - refers to the (a + 1)th element of x,. (In AMTRAN,
subscripting begins at zero.)

& x SUB (2 THRU b) - refers to the (a + 1)th through the (b + 1)th
elements of x.

® x SUB LAST or x SUB INTERVALS - refers to the last element
of x,

2.1.1.6 Relational Operations - The relational operations

@ LT - less than
e GT - greater than

12

TABLE 2-1. ARRAY CONSTRUCTION AND MANIPULATION OPERATIONS

Operation and Argument(s)!

ARRAY a, b, ¢, or
RANGE a, b, ¢

MIN x

MAX x

SUM x

SUMF x

SHIFT (a, x)

INTERVALS x

mé&n

Value(s) Returned

An array with the first element equal
to a, the last element equal to b, and
the number of equal sized increments
equal to ¢

A scalar which is the minimum valued
element of x

A scalar which is the maximum valued
element of x

An array the same size as x which con-
tains the running summation of the
elements of x

A scalar which is the sum of the elements
of x

An array the same size as x with the
elements of x shifted the number of
places and in the direction specified
by a

A scalar which is the number of elements
of x minus one

An array with the number of elements
equal to.the sum of the number of ele-
ments in m and n. The resultant
array contains the element(s) of m
followed by the element(s) of n

1) 3
The arguments a, b, and c¢ denote scalar constants, variables, or expres-
sions; x denotes an array variable or expression; m and n denote scalars

or arrays.

13

EQ - equal
NE - not equal
LE - less than or equal

®
®
®
e GE - greater than or equal

can only be used in an IF test. The relation appears between its two

arguments which must be scalar constants, variables, or expressions.

2.1.1.7 Order of Computation - Within arithmetic expressions,

the order of computation is determined by the relative priorities of the
operations -- the operation of highest priority being done first. The

priority of operations is as follows:

Operations within parentheses

Functions (such as user defined functions, SIN, ARRAY, etc.)
Exponentiation and negation \
Multiplication and division

Addition and subtraction

Relational operations

Concatenation.

Operations of equal priority are performed sequentially from left to
right through an expression, except in the case of exponentiation and

negation which are performed from right to left.

2,1.2 Assignment Statement

The assignment statement or substatement is of the form
Variable = Arithmetic Expression .

The variable may be subscripted to assign a value to a single element
or a set of elements or to assign values to a subarray. When not sub-
scripted, the variable will automatically assume the dimension of the

result of the computation specified by the arithmetic expression.

2.1,3 Program Logic Control Statements

2.1.3,1 The IF Statement - The IF statement is used to control

execution based on the relationship between two scalar constants, vari-

ables, and/or expressions and is of the form

14

IF q; related to q3 THEN substatement(s) ELSE
substatement(s).
When the relation is satisfied, the THEN clause is executed and the
ELSE clause is skipped. When the relation is not satisfied, the THEN
clause is skipped and the ELSE clause is executed. The ELSE clause
may be omitted from the IF statement, in which case, if the relation

fails, the next sequential statement is executed.

An IF test may appear as a substatement. When it is not the

last substatement, it must be terminated by the special character ;.

An additional IF statement may appear as a substatement in the
THEN or ELSE clause. If it is not the last substatement in the clause,
it must be terminated by a semicolon. If the ELSE clause of a nested

IF test is to be omitted, it must be replaced by a semicolon.

2.1.3.2 The REPEAT Statement - The REPEAT statement

provides iterative execution of a substatement or substatements. It is

of the form
REPEAT n, substatement(s)

where n is a positive valued scalar constant, variable, or expression.
The substatements are repeated n times (n is rounded to an integer

value). REPEAT cannot be used as a substatement.

2.1.3.3 The GO TO Statement - The GO TO statement is used

to transfer control to a specified statement. The transfer statement

takes the form
GO TO ¢

where c is an integer or decimal constant denoting a statement number

in the program.

15

2.1.3.4 The EXIT Statement - The EXIT operator forms a

complete substatement and is used to create multiple exit points from

a user program. EXIT cannot be entered in the conversational mode.

2.1.4 Program Call Statement

A user program is called for execution by entering the program
name followed by the parameter string required by the program. When
the program execution has been completed, execution will begin in the

calling program at the next sequential statement or substatement.

2.1.5 Input/OQOutput Statements

The input and output statements allow the input of data and user
programs and the output of data, user text, programs, and system text.
Only the statements to input and output data and to output user defined
text are allowed as substatements, The form and a description of each

input/output statement appears in Table 2-2.

The selection of input and output device and of fixed or ﬂoating.
point format is done using the console sense switches., The input device

for the INPUT statement is selected using sense switch 15 as follows:

Switch 15 OFF (down) - console keyboard
Switch 15 ON (up) - card reader.

For all of the output statements, the output device is selected using

sense switch 0 as follows:

Switch 0 OFF (down) - typewriter
Switch 0 ON (up) ~ printer .

For the TYPE, TAB, and PUNCH statements, format selection is con-

trolled by sense switch 1 as follows:

Switch 1 OFF (down) - fixed point
Switch 1 ON (up) - floating point.

16

TABLE 2-2.

Statement

INPUT variable name

TYPE m or TYPE (m, ..., q)*

TAB m or TAB (m, ..., q)?

PUNCH m or PUNCH (m, ..., q)!

TYPEOUT ‘alphanumeric characters'
LIST ALL

LIST program name

CARD

EXPLAIN ALL
EXPLAIN Tabel

1The arguments m, ...

INPUT/OUTPUT STATEMENTS

Description

A string of numeric constants in free
format is read into the system and
associated with the variable named.
The variable assumes the dimension
of the input string. The numbers
may be either integers or decimals
in either fixed or floating point
format and are separated by commas
or blanks. The input string is ”
terminated by two consecutive
slashes (//).

The value(s) of the argument or
arguments are printed.

The value(s) of the argument or
arguments are printed in tabular
form.

The value(s) of the argument or
arguments are punched on cards and
printed.

The alphanumeric information enclosed
in primes is printed.

The names of all user programs
defined in the system are printed.

The source statements of the specified
user program are output.

The source statements of a user
program are read into the system
from cards.

The AMTRAN reserved labels are Tisted.

An explanation of the specified
reserved label is printed.

, q may be constants, variables, or expressions.

17

2.1.6 System Control and Utility Statements

Table 2-3 describes the system control and utility operations
available in AMTRAN. The system control labels and any associated

arguments cannot be used as substatements.

2,2 DESIGN CONCEPTS

A design concept basic to the AMTRAN software is the execution
of an internal form for a user statement rather than the direct execution
of the source statement, The translation portion of the system trans-
forms the source statement into the internal form and performs syntax
checks. The execution portion of the system interprets the internal

form, executes the specified operations, and detects execution errors.

The internal form of a statement consists of a sequence of inter-
preter instructions which are patterned after a simple assembly language
and are executed in order. Each instruction is one or more words, each
containing an operator code in the first 7 bits and an operand code in the
remaining 9 bits, Many of the instructions implicitly refer to a system
pseudo accumulator in which all computation is performed and which
varies in length depending on the operator and the operand or operands.
Most of the system operations require only one instruction; however,
some operators require or may have more than one operand. Additional
operands are provided in subsequent words after the operator word.
These subsequent words contain a zero value operator to indicate a
multiple word instruction. Table 2-4 provides a list of the interpreter

operators and the format or formats for each instruction.

With few exceptions, the operand is a three-digit number: the
leftmost digit indicates either a program, a constant, or a variable;
and the remaining two digits specify a particular operand in the indi-

cated class. The operand is a reference number which the execution

18

TABLE 2-3. SYSTEM CONTROL AND UTILITY COMMANDS

Command or Symbol Response
RESET The system is reinitialized in the con-

versational mode. A1l variables are
?e]eted and statement numbers begin at

SUPPRESS The system enters the SUPPRESS mode
where statements are entered without
execution. When SUPPRESS is entered in
the conversational mode, the current
program under construction is saved. When
the command is entered in the SUPPRESS or
EDIT mode, only the previously saved
conversational mode program is main-
tained.

EDIT The system reprocesses the user program
referenced after the EDIT command. The
system requests entry of those state-
ments specified by number in the EDIT
statement. The current mode program
is saved by the system. The original
form of the edited program is main-
tained on file until the editing process
has been completed.

END When END is entered in the conversational
mode, the system is reinitialized in the
conversational mode with statement numbers
beginning at 1 and all variables retained.

When END is entered in the SUPPRESS mode,
the current program under construction is
destroyed and the previously saved con-
versational mode program is restored for
further statement entry.

When END is entered in the EDIT mode,
the editing process is terminated and
the original unedited program is main-
tained on file. The system restores
the last previous mode program for
further statement entry.

DELETE The system deletes the specified vari-
able(s) and/or console program(s).
DELETE may be used only in the conver-
sational mode. If any variables are
deleted, statement numbers begin at 1.

19

TABLE 2-3 ~ Concluded

Command or Symbol Response
SAVE The system performs an END operation,

retaining only the specified variables.
SAVE may be entered only in the con-
versational mode.

NAME The current sequence of statements is
stored as a program under the name
specified in the NAME statement. Both
the source statement and the internal
form of the program are saved on disk.
A1l input and output parameters to the
program must be declared in the NAME
statement. The parameter string is
enclosed in parentheses and the individ-
ual variable names are separated by
commas. The program is a functional
program if the program name is also
the name of a variable defined in the
program (see Section 2.1.1.4).

PAUSE Execution of the current sequence of
operations stops until PROGRAM START
is pressed on the console keyboard.

$ The statement line currently being
entered is deleted.

$$ The program statement currently being
entered is deleted.

The preceding character in the state-
ment is deleted.

20

TABLE 2-4. INTERPRETER INSTRUCTIONS

Number of
Operator Instruction
Code Operation Words Operand(s)
1 Exit from user 1 Not used
program
2 Call user 1 or more First word - program
program Remaining words - variables

in the order to be passed
as parameters

3 PAUSE 1 Not used

4 INPUT 4 First word - variable
Remaining words - variable
name (2 characters per word)

5 TYPE 1 or more Constant(s), variable(s)

6 PUNCH 1 or more Constant(s), variable(s)

7 TAB 1 or more Constant(s), variable(s)

9 TYPEOUT 2 or more First word - number of follow-
ing words to ouput
Remaining words - message (2
characters per word)

12 GO TO 1 244 plus the displacement from
the current Tocation to which
the branch is to be made

13 LT 1 See GO TO

14 GT 1 See GO TO

15 EQ 1 See GO TO

16 NE 1 See GO TO

17 GE 1 See GO TC

18 LE 1 See GO TO

22 ARRAY, RANGE 3 Scalar constants, variables

23 SHIFT 2 First word - scalar constant
or variable

Second word - variable

29 MIN 1 Constant, variable, or system
accumulator!?

30 MAX] See MIN

31 INTERVALS 1 See MIN

32 SUMF 1 See MIN

21

TABLE 2-4 - Continued

Number of
Instruction

Operator
Code Operation
34 LN 1
35 ATAN 1
36 ABS 1
37 TANH 1
38 SUM 1
39 MAGNITUDE 1
47 SIN 1
48 cos 1
49 EXP 1
50 SQRT 1
51 Negation 1
54 Store 1
accumulator 2
3
55 Load 1
accumulator 2
3
56 Load 1
accumutator and
free
temporary .
57 Free 1
temporary 2

22

Operand(s)

See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
See MIN
Variable

First word ~ varijable

Second word - scalar variable
or constant specifying sub-
script

First word - variable

Second word - scalar variable
or constant specifying begin-
ning subscript

Third word - scalar variable
or constant specifying ending
subscript

Constant or variable
See store accumulator
See store accumulator
Variable

Variable

First word - variable (last in
sequence)

Second word - variable (first
in sequence

Operator

Code Operation
58 Exponentiate
59 Multiply

60 Divide

61 Add

62 Subtract

63 Concatenate

TABLE 2-4 - Concluded

Number of
Instruction
Words

-t emd el el) eed

Constant
Constant
Constant
Constant
Constant
Constant

Operand(s)

1The system accumulator is specified by a zero operand.

variable
variable
variable
variable
variable
variable

23

portion of the system uses to link to the actual data or program. This
linkage is provided by information associated with the interpreter
instructions being executed. To maintain consistency, this information
is available when executing instructions in the conversational mode and
in stored programs. The information is provided by a header preceding
the executable interpreter instructions and a linkage area following the
instructions. This structure for stored programs and for a program

during construction is displayed in Figure 2-1,

When the execution portion of the system processes an operand,
the header is used to locate either a variable linkage to the data table
(and thus to the data area), a constant, or a program name. All of the
location entries in the header are relative to the first word of the header.
Thus, each program in the system can be executed by the same mechan-
ism and can vary in length, requiring only a minimum amount of storage.
This structure provides relocatability for programs. Branches within a

program are accomplished by displacements and are therefore relocatable.

The limited internal stoage requires program modularization of
the system. The modularity of the system subroutines and the relocat-
able user program structure imposes an organization on the communica-
tion and program area of the system. Figure 2-2 shows the internal
storage organization of the system. The majority of COMMON is one
integer array in which programs are constructed and executed. To take
advantage of the FORTRAN capability of equivalencing floating point and
integer arrays and to avoid building separate mechanisms for performing
operations on constants and on arrays, the data area and system constants
are also included in this one array. All references to data and programs
are done through linkage pointers; thus, data elements as well as programs
are relocatable within this array. Because user programs are stored on
disk and only brought into core when called for execution, the active area
is not always required. To minimize core requirements, this area is
used during translation for a work area and for tables which are required

only during translation.

24

Program header* Seven words

Location of first variable linkage**

Location of first constant**

Location of first console program name**
Number of parameters

Reference number of program in active table¥**

Reference number of calling program in active
table*¥**

® Location of instruction in calling program to
be executed upon return

Executable interpreter| One word per instruction - not to exceed 245
instructions instructions

Variable linkage area One word per variable - not to exceed 50 entries

User constants Two words (1st in odd word) for each distinct
(absolute value) constant used by program exclud-
ing the system constants - not to exceed 54
constants

Program call table Four words for each program called - not to
exceed 10 programs

® Three words for program name
o One word for reference to active table #***

*The program header must always begin in odd word when in core
**Relative to first word of header
***Determined by row entered in active table when program is executed
tRelative to first work of calling program header

FIGURE 2-1. INTERNAL FORMAT FOR USER PROGRAMS

25

(SQYOM 052)
379vL 379V THVA

(SauoM 0§)
379v1 210793

- (Sqyom L6) ITavL
XIONI INIWILVLS ONY
¥IINIOd HONVHE WY¥D03d

(SQ¥OM 662) VIV
NOISYIANOD INIWILVLS

NOLLYZINY9Y0 IOVMOLS TYNYILINI *Z2-2 JUN9Id
) (SQyoM £S¥L)
SWYY904d
-anS GIAVTYIAONON GNY
WYH904d NIYW “HQLINOW
(SQIOM $$02) -
(¥2071) AVTYIA0 WY¥D0ud
(SQ4OM 9602))
(TW20S) AVTHIAO WILSAS
(sadom 92) T
SHOLYIIONI WILSAS !
(SQYOM 8£9) (sayom 08l) !
: 3191 Yiva I
- 82) _
Y3V NOILNI3XI WYHOO0Hd | Amﬂwﬂvhmzou LA |
(aqyom 1) _ i
_ (sadom z12L) :
¥IINIOd VIWY IAILOY “ VIIY Y1va ¥3sn i
(Sqon _mvu4m<H “ (SQUOM 069) _
T 1
IALLOV NV ¥OLYDIGNI] | V34V AVT43A0 |
WYH904d 03H0LS ¥V 40 NOILnoAXT ! (SQHOM 0St) I
ONIANG 0D NI - II AYTYIA0 ! VY |
wn NOTLONYLISNOD WY¥D50Yd h
(Sadom osez) (sqyoM 9852)
AVHYY ¥I9IINI FTONIS NOWWOJ

INIWILYIS NVYHIWY 40
NOILVISNVYL 9ININNG
YOI NI - T AVTIIA0

26

2.3 FUNCTIONAL DESCRIPTION

The software system can be divided into six functional subsystems
or programs. Figure 2-3 shows the six functional units and the system
flow between them. The following discussions parallel the flow chart and

provide a general description of each functional subdivision.

2.3.1 Program ITZ

The program ITZ initializes the system and is executed only
once. This program ensures that the user program file is packed. If
unpacked, the file is rewritten to remove any unused records between
programs. A table, system constants, and several indicators in COMMON

and the system working file are initialized.

2.3.2 Subsystem 1

The major task performed by this subsystem is the initialization
of the system to accept a new user program. This requires initialization
of the program construction area and indicators, the statement index and
variable tables, and the user data area. If a change of statement entry
mode is requested, this subsystem saves the current mode program or
restores a previous mode program as required. This subsystem also
stores or deletes programs from the user program file and deletes
specified variables from the user data area. The tasks of this subsystem
are performed upon initial entry into the system and in response to the
following AMTRAN system control commands: RESET, SUPPRESS,
END, DELETE, SAVE, NAME, EDIT, and CARD.

2,3.3 Subsystem 2

This subsystem reads an AMTRAN source statement from the
selected input device and converts the statement to an internal form
which simplifies later translation to executable interpreter instructions.
The source statement is saved on the system working file. The source

statement in the form of a string of character codes is then scanned

27

< ENTRY »
 PROGRAM 1TZ
< INITIALIZE SYSTEM >

&

SUBSYSTEM 1

CONTROL:
PROGRAM MODE MODE CHANGE
PROGRAM CONSTRUCTION AREA OR PROGRAM
DATA AREA

USER PROGRAM FILE

PROGRAM LST

PERFORM
UTILITY
FUNCTION

REQUEST FOR

YES
ERROR? UTILITY
FUNCTION?

N

¥
NO

r Pré
SUBSYSTEM 2
READ SOURCE STATEMENT

YES Ap

ERROR?

CONVERT LABELS TO INTERNAL CODES
PERFORM SPECIAL SYNTAX CHECKS

COMPLETE CONVERSION OF SOURCE
STATEMENT TO INTERNAL CODE STRING

PERFORM SYNTAX CHECKS

a4

SUBSYSTEM 3

CONVERT INTERNAL CODE STRING
TO EXECUTABLE INTERPRETER
INSTRUCTIONS

PERFORM SYNTAX CHECKS

DATA
AREA
CONTROL

COMMAND?

YES & ERROR?

NO SUBSYSTEM 4

Y INTERPRETIVELY EXECUTE INSTRUCTIONS
ERROR? PERFORM STORAGE ALLOCATION FOR BATA
' AND PROGRAMS
DETECT EXECUTION ERRORS

vEs OUTPUT ERROR MESSAGE

ERROR?

No L CONTROLN veg

v

&

FUNCTION
EQUIRED

FIGURE 2-3. SYSTEM FUNCTIONAL FLOW CHART

twice to convert it to a compressed internal code string and to perform
syntax checks. The system control and utility commands RESET,
SUPPRESS, END, NAME, CARD, LIST, and EXPLAIN are detected
during the first scan and the system flow is routed to subsystem 1 or
program LST as required. During the second scan, the system control
commands DELETE and SAVE are detected and system flow is routed

to subsystem 1.

2.3.4 Subsystem 3

This subsystem converts the internal code string generated by
subsystem 2 to executable interpreter instructions which are to be
executed in order by subsystem 4. The interpreter instructions are
described in Table 2-4, Syntax checks are performed throughout the

subsystem.

2.3.5 Subsystem 4

This subsystem executes the instructions generated by subsystem
3. For each instruction, the operand (or operands) is located, wvalidity
checks are performed, and the instruction is executed. The subsystem
performs dynamic storage allocation for data and user programs and
maintains the linkage between user programs in the execution string.
When an error is detected, the subsystem terminates execution, follows
the established program linkage back to the conversational mode program,
releases any data associated with called user programs, and prints the
required error message. Error messages requested by other subsystems

or programs are also output by this subsystem.

2.3.6 Program LST

This program, in response to user requests, performs the output
of the names of all user programs defined in the system, the source
statements of a user program, the system reserved labels, and prestored

explanations of system reserved labels.

29

2.4 SYSTEM DATA BASE

The system data base consists of FORTRAN COMMON and three
files on disk. For ease in referencing the data base in subsystem and
program documentation, each item in the system data base has been
assigned a reference number., A deviation from the standard numbering
system has been used for items which have several uses. A dash followed
by a number is used to distinguish between various uses of an item.

Throughout the documentation, reference numbers are enclosed in

brackets, { }.

2,4,1 FORTRAN COMMON

COMMON consists of nineteen integer variables: KODE (2380),
IDAT (90, 2), IT(10), I, J, L, 1II, ID, IE, IFT, KON, LNT, LPV, NCP,
NV, IEX, IGT, NMB, and NAP., The use of each variable is described

in the following sections.

2.4.1.1 KODE (2380) {1.} - The major activities of the system

are performed using this array. It contains the program construction
area, system tables, user program execution area, and the user data
area. The substructure of one- and two;dimensional‘arrays within KODE
is described below. The subscript and dimension specify, respectively,

the beginning subscript and the size of each array in KODE.

Reference
Number Subscript Dimension Contents
{1.1} 1 450 Program construction area.

The program construction
area has the same structure
as a stored user program
with the exception of the 4th
through 7th words of the
header. See Figure 2-1 for
the program structure,

1 1 252

30

Reference

Number Subscript Dimension Contents
2 1 302
3 1 410
{1.1.1} 4 1 User program count - the

current number of user
programs referenced by the
user program being constructed,
i, e., the number of entries in
the program call table {1. 1. 8};
may range from 0 through 10.

{1.1.2} 5 1 Previous program count - the
number of user programs
referenced after the last user
program statement; may range
from 0 through 10.

{1.1.3} 6 1 Previous variable count - the
number of variables referenced
after the last statement, i.e,,
the previous number of entries
in the variable table {1.2-1.5};
may range from 0 through 29,

{1.1. 4} 7 1 Card status:

1 - program not entered from
cards

2 - program originally entered
on cards and stored on the
system working file {20. }

3 - initiate read of program
from cards.

{1.1.5} 8 245 Interpreter instructions area -
instructions to be executed in
the order of appearance, may
contain 0 to 245 instructions.
Instructions start at KODE(8)
and are contiguous. See
Table 2-4 for the interpreter
instructions.

31

Reference

Number Subscript
{1.1. 6} 253
{1.1.7} 303
{1.1.8} 411
{1.2} 451

{1.2-1}

{1-2"1. l} 451

32

Dimension

50

690

299

Contents

Variable linkage area - each
nonzero entry points to the
row in the data table {2.}
containing the storage infor-
mation for the variable. The
50 positions correspond to the
50 rows in the variable table
{1.2-1.5}.

User constants area - contains
each constant entered by the
user in the program under con-
struction; the constants are
stored in absolute value float-
ing point,

Program call table - contains
one entry for each user pro-
gram called; entries are in
contiguous columns beginning
with ¢column 1

Rows 1 - 3: console program
name (2 characters per word)

Row 4: last active reference
number, i.e., row in active
table {1.2-2,1} where the
name was entered when last
called for execution by the
program being constructed.

Overlay area for system
tables and user programms

Overlay I - system tables for
translation of AMTRAN state-
ments

Statement conversion area -
used for translation of a
source statement. The state-
ment is passed between
programs in one of four

states (for each state, pro-
grams use the remainder of
the area for working storage.)

Reference
Number

{1.2-1.1}
{Continued)

{1.2-1.2}

{1.2-1.3}

Subs cript

750

45, 2

Dimensions

Contents

State 1 - statement begins at
subscript 511 and can be up to
218 words long

State 2 - statement ends at sub-
script 749 and may begin at no
lower than subscript 511

State 3 - statement begins at
subscript 461 and may be up
to 289 words long

State 4 - statement begins at
subscript 451 and may be up
to 100 words long,

Program branch pointer - points
to the statement entry in the
statement index table {1.2-1.3}
for which the corresponding inter-
preter instructions begin at or
beyond subscript 129 in the
program construction area

{1.1}.

Statement index table - contains
one entry for each statement
entered in the program being
constructed; entries are in
contiguous rows beginning with
row 1

Column 1: statement number,

Leftmost 8 bits - 2-digit integer
to left of decimal point

Rightmost 8 bits - 2-digit integer
to right of decimal point

Column 2: statement length or
statement length and location,

33

Reference

Number Subscript Dimension
{1.2-1.3}

(Continued)

{1.2-1.4} 841 50
{1.2-1.5} 891 50, 5

34

Contents

Form 1 - number of records
on the system working file
{20.} for the AMTRAN source
statement

Form 2 -

Leftmost 9 bits - number of
records on the system work-
ing file {20.} for the source
statement

Rightmost 9 bits - subscript in
program construction area
{1.1} where interpreter instruc-
tions begin for this statement,
If the row in the table is less
than the program branch pointer
{1.2-1.2}, this contains the
actual subscript. If the row is
greater than or equal to the
program branch pointer, this
contains the actual subscript
minus 127,

EBCDIC table - EBCDIC codes
for the AMTRAN characters
ordered by the AMTRAN
character codes. The EBCDIC
code for each character appears
in the left half of the word with
an EBCDIC coded blank in the
right half of the word.

Variable table -

Rows 1 = 29: one entry for each
variable referenced in the pro-
gram under construction; entries
are contiguous and made in the
order of first appearance begin-
ning with row 1,

‘Reference
Number

Subscript

Dimension

{1.2-1.5}
(Continued)

Contents

Columns 1 - 3: variable
name (2 characters per word)
Column 4:
0 - variable undefined
1 - variable defined (has
appeared to the left of
an =)
Column 5:
1 - column 4 cannot be changed
0 - initial value
-2 - column 4 can be changed
Rows 30 - 50: the following

areas are used, the remainder
of the table is unused.

Row 30, Column 4: indicates
the requirement of a temporary
variable for the count in a
REPEAT statement

0 - not required
1 - required
Rows 30 - 50, Column 4: one

word for each possible tempor-
ary variable

0 - variable not required
1 - variable required for stor-

age of temporary results.

Rows 32 - 42, Columns 2, 3:
control tables required by the
program SCB,

35

Reference
Number

{1.2-2}

{1.2-2.1}

{1.2-2.2}

{1.2-2.3)

{1.3}

36

Subscript Dimension
451 1
452 10, 5
502 1
503 638
1141 1240

Contents

Overlay II - used for execution
of user programs when called.

1

Active table - contains one entry
for each user program in the
program execution area {1,2-
2.3}; entries are not neces-
sarily contiguous,

Column 1: subscript in KODE
at which program begins (loca-
tion of the first word of the
program header)

Column 2: length of the program

+ - program currently in
execution chain

- = program not in execution
chain

Columns 3 - 5: program name
(2 characters per word).

Active area pointer -~ points to
subscript where next program
may begin in the program
execution area {1.2-2. 3},

Program execution area,

Data area - data is stored in
floating point and accessed for
arithmetic operations by
equivalencing a floating point
array to KODE, Data is stored
beginning in an odd subscripted
location.

Reference

Number Subscript Dimension Contents
{1.3.1} 1141 1212 User data area - storage for

user variables, temporary
variables, and the system
accumulator - initial values
are assigned to the following:

Subscript Value

1141 1145

1142 604

1145 0

1146 0.
{1.3.2} 2353 28 System constants - contains

the following floating point
numbers in the order listed:
0.0, 1,0, 2.0, 3.0, 4,0,

5.0, 6.0, 7.0, 8.0, 9.0, 10.0,
3,1415927, 57.2958, 0.0174533,

2.4.1.2 IDAT (90,2) {2.} - Data table used to link the variable

linkage area {1. 1.6} to data in the user data area {1.3.1}. Contains one
entry for each data set. Entries are in contiguous rows beginning with

row 1.

Column ! - floating point subscript of first element in
data set

Column 2 - number of elements in data set.
Note: Row 90 is reserved for the system accumulator.

2.4.1.3 IT (10){3.} - General working array. The ten entries

have the varying uses described below.

Reference
Number Subscript Contents
{3.1-1} 1 During EDIT mode - location in user
program table {21.4} of program being
edited.

37

Reference
Number Subscript Contents

{3.1-2} During interpreter execution - the inter-
preter operator being executed.

{3.2-1} 2 During EDIT mode - source statement
record pointer - record number on the
user program file {21.} where the next
source statement begins.

{3.2-2} During interpreter execution - operand or
first operand for operator being executed
{3.1-2}.

{3.3} 3 During EDIT - points to entry in statement
index table {1.2-1.3} for last statement
edited. '

{3.4} 4 Type of entry to program RST:

1 - entry for normal initialization of program
construction area

2 - entry from program DLT, indicating a
program has been deleted from the user
program file {21.}

3 - entry from program NAM, indicating a
program has been stored on the user
program file

4 - entry from subsystem 2, indicating a
request for a change of statement entry
mode

5 - entry from program DLT, indicating
data storage has been made available.

{3.5} 5 Unused.

{3.6} 6 Source statement record count - one plus
the number of records occupied on the
system working file {20.} by the program
source statements, i.e., the relative record
for the storage of the next source statement.
The record number is relative to a base
record determined by the statement entry
mode {16.} - may be in file area {20. 1},
{20.2}, or {20.3}.

38

Reference

Number SubscriEt Contents
{3.7-1} 7 Type of entry to program DLT:

1 - perform system control commands SAVE
or DELETE

2 - perform system control commands SAVE
ALL or END (when entered in the conver-
sational mode).

{3.7-2} Subclass indicator for programs LSG and TRG.

{3.7-3} Type of entry to program RTN:
1 - normal return from user program

2 - return from user program and output
error message

3 - output error message;

{3.8} 8 Overlay status:

1 - system tables in core - Overlay I {1.2-1}

2 - user programs in core - Overlay II {1.2-2}.
{3.9-1} 9 When processing the EXPLAIN operator -

number indicating which explanation to out-
put from the system control file {22, 7}.

{3.9-2} When processing the LIST program operator -
record on the user program file {21. } where
internal form of program begins.

{3.9-3} During interpreter execution - storage allo-
cation parameter.

{3.10-1} 10 Type of entry to program LST:
- - process LIST ALL operator
0 - process EXPLAIN operator

+ - process LIST program operator - number
of words in source program to be listed.
Program is stored 2 characters per word.

{3.10-2} During interpreter execution - storage allo-
cation parameter.

39

2.4.1.4 1{4.} - General working register with the following

special uses:

Reference

Number Use

{4-1} During interpreter execution - current location -
subscript location in KODE of interpreter instruction
which is currently being executed.

{4-2} On entry to program EDT - displacement relative to
KODE (510) at which scan for statement numbers is to
begin

{4-3} On entry to program SCB -~ displacement relative to

KODE (510) at which scan is to begin.
2.4.1.5 J {5.} - During interpreter execution - operator class,

2.4.1.6 L {6.} - Last instruction pointer - subscript in inter-
preter instructions area {l.1.5} of last interpreter instruction to be

executed, i.e., the last instruction generated for the current statement.
2.4.1.7 11 57. [- FORTRAN record control for all files.

2.4.1.8 ID {8.} - Current program pointer - subscript of loca-
tion in KODE containing the first word of the header for the user program

currently being executed.
2.4.1.9 1E {9.} - Error indicator:

0: no error
>0: reference number for error.

2.4.1.10 IFT {10.} - Data table entry count - number of entries
in the data table {2.} excluding the entry (row 90) for the system accumu-

lator; may range from 0 through 89,

2.4.1.11 KON {11.} - Constant count - current number of user
constants entered in the program being constructed, i.e., the number
of entries in the user constants area {1.1.7}; may range from 0 through

54,

40

2.4.1.12 LNT {12.} - Data storage count - number of floating
point words currently available in the user data storage area {1.3.1};

may range from 0 through 604.

2.4.1.13 LPV {13.} - Last previous instruction pointer - sub-
script of location in the interpreter instructions area {1.1.5} containing
the last interpreter instruction generated for the previous program

statement.

2.4.1.14 NCP {14.} - Number of user programs stored on the

user program file {21.}; same value as {21. 3}.

2.4.1.15 NV {15.} - Variable count - current number of vari-
ables referenced by the program being constructed, i.e., the number of

variable names entered in the variable table {1.2-1.5}.

2.4.1.16 1EX {16.} - Statement entry mode:
1 - conversational mode, statements executed when entered

2 - SUPPRESS mode, statements not executed (programs entered
on cards are processed in the SUPPRESS mode)

3 - EDIT mode, program reprocessed with alterations but with-
out execution.

2.4.1.17 IGT {17.} - Subscript of location in KODE at which

an interpreter branch instruction was last executed.

2.4.1.18 NMB j 18, t - Statement count - number of statements

entered, i.e., points to the entry in statement index table {1.2-1.3} for

the current statement.

2,4.1.19 NAP {19.} - Active program count - number of entries

in the active table {1.2-2.1}, i.e., number of programs in the program

execution area {1.2-2.3}.

41

2.4.2 Disk Files

2.4.2.1 System Working File {20.} - The system working file

consists of 7, 360 one-word records used for the following information:

Beginning
Reference Record Number
Number Number of Records Contents
{20.1} 1 1140 Source statements for conversa-
tional mode program
{20.2} 1141 1140 Source statements for SUPPRESS
mode program
{20. 3} 2281 1140 Source statements for EDIT mode
program
{20. 4} 3421 1170 Conversational mode program and
indicators saved during SUPPRESS
mode
{20.5-1} 4591 1170 Last previous mode program and
indicators saved during EDIT mode
{20.5-2} 4591 1600 Temporary storage of first 1, 600
words of KODE when area is needed
for repacking of the user program
file by the program RST
{20. 6} 6191 400 Overlay I {1.2-1}, except statement
conversion area {1.2-1,1}
{20.7} 6591 391 Overlay II {1.2-2}
6982 379 Unused.

2.4.2,2 User Program File {21.} - The user program file con-

sists of 30, 720 one-word records organized in the following manner:

42

Beginning

Reference Record Number
Number Number of Records
{21.1} 1 1
{21.2} 2 1
{21.3} 3 1
{21.4} 4 96, 6
{21.5} 580 30, 141

Contents
File status:
0 - packed

1 - not packed

First record available for program
storage

Number of user programs stored
on file (Same value as {14. }.)

User program table - one entry
for each program; entries arranged
in alphabetical order and in con-
tiguous rows beginning in row 1.

Columns 1 - 3: program name (2
characters per word)

Column 4: record number at which
internal form of program begins
(see Figure 2-1 for program structure)

Column 5: record number at which
the source statement count is stored.
This is followed by the statement
index table and the source statements
of the program.

Column 6: number of records
occupied by statement count,
statement index table, and
source statements

Records for program storage.

2.4.2,3 System Control File {22.} - The system control file

consists of 14, 080 one-word records organized in the following units;

43

Beginning

Reference Record Number
Number Number of Records
{22.1} 1 56, 4
{22.2} 401 15
{22.3} 467 34
{22, 4} 501 50
{22,5} 601 100
{22.6} 701 1399
{22.7} 2100 2, 56
{22.8} 2212 11, 869

44

Contents

System label table -

Columns 1 - 3: system label (2
characters per word)

Column 4: control code for
scanning.

Array containing codes used by
program SCB to reformat REPEAT
statement

Initialization array for programs
STV and TAB.

EBCDIC table - EBCDIC codes for
AMTRAN character set ordered by
AMTRAN character codes (same
as {1.2-1.4}).

Error message control array - one
entry for each error message con-
tains the record number at which
the message begins.

Error messages - stored 2 char-
acters per word.

System explanation control table -
the order of entries in this table
corresponds to the labels entered
in the system label table,

Row l: record number at which
explanation begins

Row 2: number of records in
explanation,

Explanations for system labels
(2 characters per word),

3. SUBSYSTEM DESCRIPTIONS

The four subsystems presented in the functional description (see
Section 2. 3) and flowcharted in Figure 2-3 are described further in this
section. The specific tasks required to achieve the functional capabilities
of each subsystem are presented. Flowcharts are provided to show the
structure of the programs comprising each subsystem. The flowchart
elements appearing in dotted lines are tasks performed for a subsystem

by the system control program CTL.

3.1 SUBSYSTEM 1

The major task for this subsystem is the initialization of the
system to accept a new user program. The three possible entries to the
subsystem are for

® Normal initialization (entry 1)

® Program control commands (entry 2)

® Data area control commands (entry 3).

The various entries and the actions taken are shown in Figures 3-1 and

described below.

3.1.1 Normal Initialization

Upon a normal entry to the subsystem, program and data initializa-
tion are performed. For program initialization, the following are

initialized:

Program construction area {1.1} (except card status {1.1.4})
Program branch pointer {1.2-1.2}

Statement index table {1.2-1.3}

Variable table {1.2-1,5}

Source statement record count {3.6}

Last instruction pointer {6.}

Error indicator {9.}

Constant count {11.}

Last previous instruction pointer {13.}

Statement count {18.}.

45

'?

g e e e o e e e e

L W3LsASans “L-€ FNOIA

¥ W3ILSASANS
oL L1x3

Wy)
PN INSWILVIS
e ~ 313130 JHL NI QIT41D3dS SWYDOHd

\ -
< 0w > ¥ISN IHL WOUS T18VL XIONI INWALVLS IZIVILINI

—— = £d0NY3 \/VA..I|||. TV 3714 WYE90¥d ¥3SN FHL WOH4 313730
~ -~ YRV VIVG NI 39WH01S 34 “GRINDR 41

V1Va 404 € AYIN3

SONVI0D TOULNDD Smo

170 Wya90ud

11x3

SYILNNOD

GNV SHOLVOIANI NOILDAYISNOD WwHS0ud
T4V XIANI INFWIALYLS

J16vL FT8VINVA

VY NOILONYLSNOD Wvdooud

VY vivd

SIZIWILINTD “ARINDJ SV

NOTLVWHOINI NOILINYLSNOD WWHOOUd FWOLSIH ¥0 3AYS
114 WVE90Ud ¥3SA 3HL JIVdT “ARINDA 41

378VL T04INOD WYHI0Ud 3LvadR *ORINDI 41

NOILVZITWILINI TYWHON
404 | AYING

¥ WILSASENS
0L 1IX3

| SYOLYDIONI T0MINGD 1103 3ZIIYILINI
PN Q3LIGT 39 OL SINTWILYLS HIVH
~ IT14 WYD0ud

~
”~
<7 LONWMOD N
T~ o L1 P
”~
/// _

N

N - NOILVWIOINI NOILONYLSNOD WYd90ud 3Q0W SROIAIYd IAVS
~ L1¥3ISNI ¥0 LIGI 01 SYIGWAN INIWILYLS ILVAITVA
104

314 WYH90Ud 43S JHL NO SINM
~31Y1S INN0S OGNV “I1EVL XIANI INIWILVIS
INNOD INIWILVLS ‘W04 TWNYILNI TUOLS

WYH90Hd Y04 W04 TYRYIINI TWNIJ I1VH3INI9

7 ~
e ENINGY SONVHNOD TOYLNOD
ETEN S al WYH0Yd ¥03 2 ANIN3

¥ W3LSASENS
0L 11X3

46

For data initialization, the following are initialized:
® User data area {1.3.1}
e Data table entry count {10.}
® Data storage count {12.}.

3.1.2 Program Control Commands

The actions taken in response to the program control commands,

i.e., SUPPRESS, END, CARD, EDIT, and NAME, are described below.

3,1.2.1 SUPPRESS - If the system is in the EDIT mode when the
SUPPRESS command occurs, the system restores the program construc-
tion information on the system working file {20.5=1} for the previous mode.
If the system is in the conversational mode, the following program con-

struction information is saved on the system working file {20. 4}:
® Program construction area {1.1}
® Overlay I {1.2-1}, except the statement conversion area {1.2-1.1}

® All remaining variables in COMMON, except the data table {2.}
and the number of user programs {14.}.

In all modes, the statement entry mode {16.} is reset and normal program
initialization is done.
3.1.2.2 END - When the END command is entered in the conver-

sational mode, all temporary data storage is freed and normal program

initialization is done,

When the END command is entered in the SUPPRESS or EDIT
mode, the previously saved program construction information is restored

(see Section 3.1.2.1).

3.1.2.3 CARD - The subsystem will process the CARD command
as a SUPPRESS command (see Section 3. 1.2.1), with the additional action

of setting the card status {1. 1. 4} to three.

47

3.1.2.4 EDIT - The subsystem will perform ten tasks in response
to an EDIT command: validate the statement numbers to be edited or
inserted; save the program construction information (see Section 3.1.2.1)
on the system working file {20.5-~'1} when in‘ the conversational or
SUPPRESS mode; initialize the statement index table {1.2-1. 3} from the
table stored on the user program file {21.} with the program to be edited;
mark the statements to be edited and/or create entries for statements to
be inserted; initialize the source statement record count {3.2-1} and the
pointer to the last statement edited {3.3}; set the statement entry mode
{16.} to the EDIT mode; and perform normal program initialization,

omitting initialization of the statement index table.

3.1.2.5 NAME -~ In resporse to the NAME command, the
information in the program construction area {1.1} is processed to
generate the final internal form of the program. Validity checks are
performed on the program name, parameter string, and interpreter
branch instructions. The internal form of the program is stored on

the user program file {21.5}, along with the following information:
® Statement count {18.}

® Statement index table {1.2-1.3}, omitting unused rows and
placing column two in form 1

® Program source statements from the system working file {20.}.

The program name and storage information are entered in the
program control table {21.4} and the record control indicators {21.1},
{21.2}, and {21.3} are updated on the program file. The performance
of the remaining tasks is dependent on the statement entry mode: if the
program was entered in the conversational mode, perform normal

program and data initialization; if the program was entered in the

48

SUPPRESS mode, restore the previously saved program construction
information (see Section 3.1.2.1) for the conversational mode; if the pro-
gram was entered in the EDIT mode, repack the program file {21. } and

restore the program construction information for the last previous mode.

3.1.3 Data Area Control Commands

The response of the subsystem to the data area control commands

SAVE and DELETE is explained below.

3.1.3,1 SAVE - For the SAVE ALL command, the subsystem
frees all temporary storage in the data area and performs normal

program initialization.

In response to the SAVE command followed by variable names,
the subsystem frees all elements in the user data area {1.3.1} not
specified in the SAVE statement and performs normal program
initialization. |

3.1.3.2 DELETE - Programs specified in the DELETE state-
ment are deleted from the user program file {21.} and the program file
is packed., Variables specified in the DELETE statement and temporary
variables are freed in the user data area {1.3.1}. The normal program

initialization is performed if any variables are deleted.

3.2 SUBSYSTEM 2

Subsystem 2, shown in Figure 3-2, reads an AMTRAN source
statement, converts the statement to an internal code string suitable for
translation to executable interpreter instructions, and performs syntax

checks.

The AMTRAN source statement is read into the statement con-

version area {1.2-1.1} from either the keyboard, card reader, or disk

49

¢ WALSASANS “2-€ N9Id

11X3

SMIIHD XVINAS Wd04¥3d
313730 ANV 3AVS 12313

1V3d3y ONY ‘41 HONNd QY1 “3dAL “SWAYIINI “DS °“1IX3
“ISAYd 1SV *IONVY CAVHYY LVWHO4 ATTVIJ3dS ONY 123130

INNOD INVLISNOD ¥3SN NIVINIYW

$3000 TYNYILNI HLIM
SYILOVUVHD TWIJ3dS GNV SLINVLSNOD JT¥3WNN IIVTdIY

¥ 975 WY490ud
ON
\\\F// \\\///
- ONVWNOD S~ 7 ENOTLONNS S~
L Walsasans \,___~ 0HINOD Ny o~ AT Sy 1S Wyd90Yd
0l 11X3 STA~_ 00K AYINT - ON N 404 1SInd: -~ S3h oL 1Ix3
SCUNIWALYLS ~_ $isn 7
// \\ // \\
- ¥
ow_- . NIVIdX3 aNy
PraNg *ISIT QYYD ‘1103 “IWYN “GNI “SSTddNS *1ISH
s ~o - SGNVWHOD W3LSAS 3IVAITVA GNV IZINDOIR
¥ W3LSASENS Il,\/\ oI D De— SYILNNOD WYHI0Ud GNY I1SVINVA NIVINIVW
0L 11x3 SN P s3IVl TIVD
///\\\ WYHD0Yd ONY F18YINVA NI SITNINI MIN IivW ‘0I9Inb: SY
$3002 WNYIINI HLIM ST13aVT IDY1dM
5 VIS Wy90dd
ON
\\\F//
pid >~
¥ W3LSASENS - ;
oL 11X3 WHA// <H0uY3 \\v
//K\\
b

"SYALINIOd 3714 HSIQ ANV 378V X3IONI INIWILVIS NIVINIVW

3114 ONIRHOM WILSAS
JHL NO QIAIVd JAYS GNY_S3IG0D ¥ILIVYVHD NviiWy OL LM3A
-NOD “37IA30 31YINdO¥ddY WOYMd INIWILVLS 20uN0S QYR

SUILNNOD Wydo0ud GNY. ITEYIAVA
SACIATYA YO0 INFWUND ‘YIINIOD X3IANI IN3WILVLS NIVINIVW

TIOY WYH90ud

AY1N3

50

and is saved on the system working file (either {20.1}, {20.2}, or
{20.3}). The source statement is then scanned to convert labels,
numeric constants, and special characters to internal codes. As

required, the subsystem updates the following:

Statement count {18, }

Statement index table {1,2-1.3}

Variable count {15.}

Previous variable count {1.1.3}

Variable table {1.2-1,5}

Program count {1.1.1}

Previous program count {1.1.2}

Program call table {1.1, 8}

Constant count {11, }

User constants area {1.1,7}

Source statement record pointer for the user program file {3.2~1}
Pointer to the last statement edited {3.3}

Source statement record count for the system working file {3.6}.

Special formatting of the statement string and preliminary syntax checks
are done for the operators ARRAY, RANGE, LAST, PAUSE, EXIT,

SQ, INTERVALS, TYPE, TAB, PUNCH, and TYPEOUT, and for the
IF and REPEAT statements,

The normal exit from the subsystem is to subsystem 3 with
the internal code string in state 3 of the statement conversion area
{1.2-1,1}, However, alternate exits occur when the subsystem recog-
nizes certain system control and utility commands. The commands and

the tasks performed in response by the subsystem are discussed below.
3.2,1 RESET

On a RESET command, the subsystem sets the statement entry
mode {16.} to the conversational mode and the previous variable
count {1, 1,3} to zero, and routes the system flow to subsystem 1,

entry 1,

51

3.2.2 SUPPRESS or CARD

The subsystem sets the type of entry to program RST {3.4}

to four and routes the system flow to subsystem 1, entry 2.
3.2.3 END

When END is entered in the conversational mode, the type of
entry to program DLT {3.7-1} is set to two and the system flow is
routed to subsystem 1, entry 3. In the SUPPRESS or EDIT mode,
the subsystem performs the same tasks as for SUPPRESS,

3.2,.4 NAME

The system performs syntax checks and formats the program

name. The system flow is routed to subsystem 1, entry 2,
3.2.5 EDIT

To process an EDIT command, the subsystem performs syntax
checks, initializes the pointer to the program table {3.1-1} and the
FORTRAN record control {7.}, and routes the system flow to sub-

system 1, entry 2.

3.2.6 LIST or EXPLAIN

For a LIST or EXPLAIN command, the subsystem sets the type
of entry to program LST {3.10-1}, the EXPLAIN or LIST control indi-
cator {3.9-1,-2}, and the FORTRAN record control {7.}, and routes
the system flow to the program LST.

3,2.7 DELETE or SAVE

On a DELETE or SAVE, system flow is routed to subsystem 1,

entry 3.

52

3.3 SUBSYSTEM 3

Subsystem 3, flowcharted in Figure 3-3, converts the internal
code string (state 3 of the statement conversion area {1.2-1,1}) generated
by subsystem 2 to the corresponding sequence of interpreter instruc-
tions executable by subsystem 4 and performs syntax checks. From
the internal code string, the subsystem first generates a post-fix
Polish stack based on the operation priorities (see Section 2,1.1. 7).
The stack is generated so that the order in which operations are to be
performed corresponds to their order of occurrence from left to righi;
and so that the associated operands immediately precede an operation.
The subsystem then uses this stack to generate the executable inter-
preter instructions, Moving along the stack from left to right, the
instructions to perform each operation and to store the result are
generated. The result then replaces the operator and operands in the
stack and the stack is compressed. This process is continued until
the stack has been transformed into the corresponding interpreter

instructions,

The generated instructions are entered into the interpreter
instructions area {1.1.5} at the location specified by the value of the
pointer to the last interpreter instruction {13. }. For the current
statement entry, column 2 of the statement index table {1.2-1,3} is
changed to form 2. The current interpreter instruction limit {6. }

is set,

3.4 SUBSYSTEM 4

Subsystem 4 executes the interpreter instructions generated
by subsystem 3. The instructions to be executed are specified by the

pointer to the last instruction generated for the previous statement

53

54

(::; ENTRY ::)
PROGRAM STK l

GENERATE POLISH STACK FROM
INTERNAL CODE. STRING

PERFORM SYNTAX CHECKS

EXIT TO
SUBSYSTEM 4

)

/l\
~ ~
7 S YES
< ERROR? ’/;>--->(:j
™~
~ e
\\ //
Tho
PROGRAM CDR v

CONVERT POLISH STACK TO EXECUTABLE
INTERPRETER INSTRUCTIONS AND STORE
IN INSTRUCTION AREA QF PROGRAM
CONSTRUCTION AREA

PERFORM SYNTAX CHECKS

'
oD

FIGURE 3-3. SUBSYSTEM 3

{13.} and the current instruction limit {6.}. The instructions

are executed in the order of occurrence. KEach instruction is upacked,

separating the operator code {3.1-2} and the operand code {3.2-2}.

The operator is then classified according to the following:

Class

1

2

Subclass

Operators
(See Table 2-4 for the Operator Codes)

Exit from user program
Call user program
INPUT

TYPE, PUNCH, TYPEOUT

Load accumulator, load accumulator and
free temporary

SIN, COS, EXP, SQRT, NEG

+, % /, -5 &

GO TO, LT, GT, EQ, NE, GE, LE
Store accumulator

Free temporary

ARRAY or RANGE

MIN, MAX, INTERVALS, SUMF
LN, ATAN, ABS, TANH, SUM, MAGNITUDE
SHIFT

sk

PAUSE

TAB,

55

The subclass indicator {3.7-2} is set, if required by the classifi-
cation, Depending on the operator classification number, the system
flow is routed to the appropriate program for execution of the operator.

Figure 3~-4 shows the flow within subsystem 4,

For each operator, the operand is classified by the appropriate
program and, where data is specified, the data is located. Execution
checks are performed and the operator is executed. Storage allocation
for data may be required in the execution of operators of all classes
except 4, 5 (subclass 4), 7, and 8, Storage allocation for user programs

can only occur when a class 2 operation is being executed.

When an error is detected, the subsystem terminates execution
of the interpreter instruction, follows the established program linkage
back to the conversational mode program stored in the program con-
struction area {l1.1}, releases any data not associated with the conver-
sational mode program, and prints the required error message. Error
messages requested by other subsystems or programs are also pro-

vided by subsystem 4.

56

ENTRY FOR
EXECUTION

[INITIALIZE POINTER TO CURRENT
| INTERPRETER INSTRUCTION

{ SET_BRANCH INSTRUCTION POINTER
L_TO ZERO

|
|
|
f
J
-~
“HAVE AL~

e
<7 INSTRUCTIONS \YES T
< BEEN - EX
~EXECUTED? ~

~\\\\\ g

UNPACK INSTRUCTION
CLASSIFY OPERATOR

ERROR MESSAGE

ENTRY TO QUTPUT

=

D B

NO, EXIT

- -—y
e SN YES [ser Tvee o
< R />———>} ENTRY T0
P PROGRAM RTN
\\\\~\ e e e e
Io PROGRAM RTN
RETURN FROM USER
PN PROGRAM
< class 17 DES PERFORM DATA STORAGE
~o _ ALLOCATION AND/OR
~
ST PRINT ERROR MESSAGE
PROGRAM JMP f‘) ,{
INITIALIZE OR READ OVERLAY II P
~
PERFORM PROGRAM STORAGE ALLOCATION ves N g ERROR
PASS PARAMETERS AND CONTROL CLAss 22 > <L gg?ﬁ?g&
~”~
SET POINTER TO CURRENT INTERPRETER \\\ s N
INSTRUCTION EO IES
PROGRAM STV P P
EXECUTE INPUT Ves " ~o =7 PROGRAM S
PERFORM DATA STORAGE . CLASS 37 > <\INITIALIZATION
ALLOCATION ~o /// ~ REQUIRED? P
~ ”~ . e
NO

EXIT TO
SUBSYSTEM 1

)

FIGURE 3-4, SUBSYSTEM 4

57

58

PROGRAM WRT

7N

[
| NEXT INSTRUCTION
L

_____’[____

/ IN S
YES // PROGRAM
- cousmucnon -
S AREA? e

FIGURE 3-4 - Concluded

\\
NO
INCREMENT POINTER TO
NO 'l : >

EXECUTE CLASS 4 YES /// \\\
XECUTE
‘ INSTRUCTION Q Gassa >
S e
~ ”
Fo PROGRAM LSG
PN EXECUTE CLASS 5 INSTRUCTION
PR SSOyEs PERFORM DATA STORAGE ALLOCATION
<L Gass T SET BRAMCH .INSTRUCTION POINTER ON
Sso e 60 TO
\fo/ CHECK FOR TERMINATION ON SUBCLASS
PROGRAM TRG N /,i\
P Y 7 ~
EXECUTE CLASS 6 LNSTRUCTION N < o NE
PERFORM DATA STORAGE ALLOCATION .o - S -
S’ - ~_ "
/Eo fo
PROGRAM TAB
o
EXECUTE TAB - ~ - SNJES EXIT 10
CLASS 8? g < INITIALIZATION
INSTRUCT! ~ P SUBSYSTEM 1
UCTION Y e [N ~ JEIRED?_~
~_" SN e”
I"O NO
[- =
| EXECUTE PAUSE INSTRUCTION |
| (WAIT UNTIL PROGRAM START) |
I o
X -
N — : L~ RESET >~
-~ TNQNO] SET BRANCH INSTRUCTION lq ¥ YESc~ BRANCH
~.
E>—’(\\ ERROR? /’_'| POINTER TO ZERO < INSTR”C"?" -~
- L /
\\ vV
~ ~
JES

‘4. PROGRAM DESCRIPTIONS

Detailed descriptions of each program in the system are provided
in this section. Many of the programs perform extensive error checks;
however, in order to maintain clarity in the explanations of the programs'
major tasks, the error checks are not detailed in each‘ program. Appendix
A contains a list of the error messages and a table showing which programs
can request the output of each message. Program listings are provided

in Appendix B.

4.1 PROGRAM CTL

The Assembler language program CTL is the control program of
the entire system. It is called by the main program AMTRN which exists
only to take advantage of the disk file and COMMON definition capabilities
of FORTRAN., Program CTL performs all of the functions shown in the
functional flowchart, Figure 2-3, and the functions which appear in dotted
lines in the flowcharts of the four subsystems, Figures 3-1, 3-2, 3-3, and
3.4, By checking indicators and parameters set by the various programs,
program CTL handles all routing of the system flow between subsystems
and programs within subsystems. Program CTL directly calls the

following programs, which cannot directly call one another:

Subsystem Program

ITZ
LST

1 RST
NAM
EDT
DLT

2 RDLL

SCA
SCB

59

Subsystem Program

3 STK
CDR

4 GETOP
RTN
JMP
STV
WRT
LSG
TRG
TAB.

The organization of the control program and the programs of the system
is imposed by the characteristics of the IBM 1130 Disk Monitor System

and by core limitations.

4.2 PROGRAM ITZ

The program ITZ, flowcharted in Figure 4-1, initializes the
system and is executed only once. The program checks the file status
word {21.1} on the user program file {21.} to determine if the file is
packed or unpacked, and repacks the file if required. After packing the
file to remove any unused records between programs, the file status
word is set to zero, and the updated pointer to the first available record
{21.2} and the updated user program table {21. 4} are written on the file.
Two control arrays used by program SCB in subsystem 2 are initialized
in COMMON. The arrays take up unused space in the variable table
{1.2-1.5}, namely, the first and second columns of rows 32 through 43.
The system constants {1. 3.2} are also initialized. The EBCDIC table
{1.2-1. 4} is read into COMMON from the system control file {22. 4} and
initialized on the system working file {20.6}. The card status {1. 1.4},
overlay status {3.8}, statement entry mode {16.}, and the type of entry
to program RST {3. 4} are set to one; the variable {15.} and previous

variable {1. 1.3} counts are set to zero.

60

USER

PROGRAM
FILE

PACKED?

PACK USER
PROGRAM FILE

INITIALIZE SCAN
TABLES AND SYSTEM
CONSTANTS

I

INITIALIZE EBCDIC
TABLE

SYSTEM
CONTROL
FILE

SYSTEM

h 4

INITIALIZE:

CARD STATUS

OVERLAY STATUS
STATEMENT ENTRY MODE
ENTRY TO RST

VARIABLE COUNT

PREVIOUS VARIABLE COUNT

I
-

. WORKING
FILE

FIGURE 4-1. PROGRAM ITZ

/USER
PROGRAM
FILE

61

4.3 SUBSYSTEM 1

4.3.1 Program RST

The major tasks of this program are the initialization of the
system to accept a new program and the restoration of a previous mode
program for continued entry of statements. The functioning of RST is

controlled mainly by the type of entry {3.4} which indicates the following:

1 - Entry from program ITZ, program EDT, subsystem 2, or
subsystem 4, indicating program initialization requirement

2 - Entry from program DLT, indicating a program has been
deleted from the user program file {21.}

3. - Entry from program NAM, indicating a program has been
stored on the user program file

4 - Entry from subsystem 2, indicating a change of statement
entry mode requirement

5 - Entry from program DLT, indicating storage in the user
data area {1.3.1} has been freed.

The types of entry to RST are discussed below in the order in which they
appear in the flowchart, Figure 4-2.

4,3.1.1 Entry Type 3 - Program RST updates the user program

table {21. 4} after the program NAM has stored a user program on the
user program file {21,}. The program name and file storage informa-
tion are provided for RST in six words, beginning in KODE(513). The
six words contain the information to be entered directly into the program

control table:

Subscript in KODE Contents
513, 514, 515 Program name (2 character per word)
516 Record number at which internal form of

program begins on the file

62

ENTRY

STATUS

TABLE ON FILE
SET OVERLAY STATUS

READ USER PROGRAM TABLE FROM FILE

INSERT PROGRAM NAME AND FILE STORAGE INFOR-
MATION IN TABLE IN ALPHABETICAL ORDER

INCREMENT THE NUMBER OF USER PROGRAMS OR
DELETE PREVIOUS PROGRAM NAME AND SET FILE

WRITE FILE CONTROL WORDS AND USER PROGRAM

RESET ENTRY
T0 TYPE 1

!

SET:

PREVIOUS VARIABLE COUNT
CARD STATUS

iy

AS REQUIRED:

FROI

ENTRY
TYPE 12 AS REQUIRED:

SAVE CONVERSATIONAL MODE
CONSTRUCTION INFORMATION

SET STATEMENT ENTRY MODE

RES;O;EL PROGRAM CONSTRUCTION INFORMATION
E

SET CORE STATUS, ERROR INDICATOR, AND
NUMBER OF ACTIVE PROGRAMS

SYSTEM
WORKING
FILE
PROGRAM

» CARD STATUS,
UNT

AND PREVIOUS VARIABLE COI
PACK FILE USER
IF NOT PROGRAM
PACKED FILE

RESET ENTRY
TO TYPE 3

SET ERROR
INDICATOR

SET ENTRY

3

FIRST
STATEMENT?

SUPPRESS

SET ENTRY
TO TYPE 1

EXIT

T0 TYPE 1

'

SET VARIABLE COUNT TO PREVIOUS VARIABLE COUNT

IF IN CONVERSATIONAL MODE AND NO VARIABLES ARE
DEFINED, INITIALIZE DATA AREA

IF REQUIRED, READ OVERLAY I AND SET OVERLAY STATUS
SET PROGRAM LOCATION AND COUNTERS

OUTPUT HEADING FOR CONVERSATIONAL OR SUPPRESS
MODE AND CLEAR STATEMENT INDEX TABLE

SET PROGRAM BRANCH POINTER

INITIALIZE PROGRAM CONSTRUCTION AREA

CLEAR INDICATED AREAS OF VARIABLE AND DATA TABLES
SET REMAINDER OF PROGRAM INDICATORS

SYSTEM
WORKING
FILE

EXIT

FIGURE 4-2.

PROGRAM RST

63

Subscript in KODE Contents

517 Record number at which the source
statement count is stored

518 Nﬁmber of records occupied by state-
. ment count, statement index table, and
source statements,

The program table is read from the user program file and the
program name and storage information are entered into the table, keep-
»ing the tablé in alphabetical order by program name. If the program was
en’ééred into the table as the result of an EDIT opefation and if the program
name is different from the previous name, the previous entry for the
program is deleted from the table. The requirement for this action is
determined by the indicator {3.1-1} which was set on the initial EDIT
statement to the row in the program table {21.4} containing the informa-
ti‘o‘nbfor the program being edited. If ‘the system is in the EDIT mode,
the file étatus word {21. 1} is set to one, If the program was named in- -
the conversational or SUPPR?ESS.‘."m;dd‘e,‘ the number of console programs
{14.} and {21.3} is incremented. The updated program table {21.4} is

written on the user program file. The overlay status {3.8} is set to two.

If the system is in the conversational mode, the previous vari-
able count {1. 1.3} is set to zero, the card status {1. 1.4} and the type
of entry to RST {3. 4} are set to one, and the program functions proceed

as for an entry type 1 (see Section 4. 3. 1. 4).

If the system is not in the conversational mode, the program
functions for an entry type 4 are executed, omitting the setting of the

entry type to one.

4.3.1.2 Entry Type 4 - The first action taken on this type of

entry is to reset the entry type to one. Program RST then determines
and processes any change of statement entry mode required by the

following user commands:

64

® NAME (only if the program was entered in the SUPPRESS or
EDIT mode and has already been stored on the user program
file {21.})

® SUPPRESS
® END (when entered in the SUPPRESS or EDIT mode)

e CARD.

A change of entry mode may require the storage or retrieval of the

following program construction information:
@ Program construction area {1.1}

e Overlay I {l.2-1}, except the statement conversion area
{1. 2- 1 ® 1 }

e All remaining variables named in COMMON, except the data
table {2.} and the number of user programs {14.}.
Table 4-1 shows the program information read or write requirements
and the area involved on the system working file {20.} as a function of

the user command and the statement entry mode {16.}.

If the system enters the SUPPRESS mode in response to a
SUPPRESS or CARD command, the program RST ensures that the state-
ment entry mode is set to two, that the previous variable count {1. 1,3}
is set to zero, and that the card status {1.1,4} is set to one for a
SUPPRESS command and to three for a CARD command. The program

then performs the actions of entry type 1 (see Section 4.3.1.4).

For all other commands, the overlay status {3.8} is set to one,
the error indicator {9.} is set positive, and the active program count
{19.} is set to zero. If the command was NAME and occurred in the
EDIT mode, the type of entry to RST {3.4} is set to three and the func-
tions described for entry types 2 and 5 are performed. Otherwise, the
type of entry to program RST is set to one and one of two alternate actions

are taken depending on the value of the statement count {18. }: if the count

65

TABLE

Command
NAME
SUPPRESS
END

CARD

4-1. PROGRAM CONSTRUCTION INFORMATION READ OR WRITE

REQUIREMENTS
Conversational Suppress
Mode Mode Edit Mode
Read {20.4} Read {20.5}
Write {20.4} Read {20.5}*
Read {20.4}
Write {20.4} Read {20.5}*

*The restored mode is reprocessed as if it were the mode in which the

command was

66

entered.

is one, exit from RST; if the count is not one, perform functions of entry

type 1 (see Section 4. 3. 1. 4).

4.3.1.3 Entry Types 2 and 5 - These entries indicate that the

user program file {21.} may require repacking. The file status word
{21.1} is checked. If the file is not packed, the program RST packs
the file, removing any unused records between programs, resetting the
file status word to zero, and writing the updated pointer to the first
available record {21.2} and the updated user program table {21.4} on
the file. The type of entry to RST {3.4} is set to one. If the original
entry was type 5, the functions of entry type 1 are performed. If the
original entry was type 2, the error indicator {9.} is set positive. For
entry type 2 and an entry to this section after a completion of an editing
function (see Section 4. 3.1, 2), the statement count {18.} is checked.

If the value is one, an exit from RST is made; otherwise, the functions

for an entry type 1 are executed.

4,3.1.4 Entry Type 1 - This entry is for normal program and

data initialization. The variable count {15.} is set equal to the previous
variable count {1.1.3}. If the variable count is zero and the statement
entry mode {16.} is one, data initialization is performed. This consists
of setting the data table entry count {10.} to zero, the data storage count
{12.} to 604, and the initial values listed under the user data area {1.3.1}

description.

If the overlay status {3.8} is two, Overlay I {1.2-1} is read from
the system working file {20.6} and the overlay status is set to one. RST
then sets the current program pointer {8.} and the source statement
record count {3.6} to one and the active program count {19.}, the user
constant count {11.}, the statement count {18.}, the error indicator
{9.}, the previous program count {1.1.2}, and the program count

{1.1.1} to zero.

67

The pointers to the last interpreter instruction generated for the
previous statement {13.} and the current statement {6.} are initialized
to seven. The first three words of KODE are set to 252, 302, and 410,
respectively. The rows of the variable table {1.2-1.5} which do not
contain names of variables are cleared by setting them to zero. In the
rows used for temporary variables, column five is set to zero and
column four is set to minus one. If the system is in the conversational
mode, unused rows of the data table {2.} are set to zero. Entries not

required in the variable linkage area {1.1.6} are set to zero.
If the system is in the conversational or SUPPRESS mode, the
heading
ENTER PROGRAM
or
ENTER PROGRAM - SUPPRESSED

is printed on the console typewriter. Also, the statement index table

{1.2-1.3} is set to all zeros,

4.3.2 Program NAM

In response to the NAME statement, the program NAM stores a
user program which has been entered in the conversational, SUPPRESS,
or EDIT mode on the user program file {21.}. The functions performed
by the program NAM can be grouped into eight tasks, The tasks are

described below and the program is flowcharted in Figure 4-3,

4,3.2.1 Task 1 - Column 2 of the current row of the statement
index table {1.2-1,3} is placed in form 2. The current row is specified
by the statement count {18.}. The value added to column 2 is deter-
mined by the pointer to the last interpreter instruction generated for the

previous statement {13.} and by the program branch pointer {1.2-1,2}.

68

(::‘ ENTRY ::)
.

PLACE COLUMN 2 OF
CURRENT ROW IN STATE-
MENT INDEX TABLE IN FORM 2

VALIDATE FUNCTION
NAME

ADD LOAD INSTRUC-
TION TO PROGRAM

:

FUNCTIONAL
PROGRAM ?

ADD EXIT INSTRUCTION
VALIDATE PARAMETER STRING
OUTPUT NAMES OF ANY UNDEFINED VARIABLES
REPROCESS INTERPRETER INSTRUCTIONS:
REPLACE VARIABLE REFERENCES WITH NEW CODES
COMPLETE GO TO INSTRUCTIONS

FOR FUNCTION PROGRAM, REPLACE EXIT INSTRUCTIONS
WITH BRANCHES

COMPRESS PROGRAM, ADJUSTING HEADER

CLEAR LINKAGE WORDS IN HEADER

STORE ON USER PROGRAM FILE:
PROGRAM IN COMPACT INTERNAL FORM
STATEMENT COUNT
STATEMENT INDEX TABLE WITH COLUMN 2 IN FORM 1
SOURCE STATEMENTS FROM SYSTEM WORKING FILE
UPDATED FIRST AVAILABLE RECORD POINTER

PLACE STORAGE INFORMATION WITH PROGRAM NAME IN
STATEMENT CONVERSION AREA

v

o)

FIGURE 4-3. PROGRAM NAM

69

4.3.2.2 Task 2 - The NAME statement is passed to NAM from
subsystem 2 in state 1 of the statement conversion area {1.2-1.1} with

the following information in the indicated locations:

Subscript-in KODE Contents
511 Internal code for NAME label
512 Variable internal code or zero
513, 514, 515 Program name (2 characters per word)
516 Unused
517 Beginning of argument list.

If KODE (512) is not zero, the user has defined a function program by]
using a program name which is also a variable name. This word contains
the internal code for the variable. If the program is a function, it is
verified that the variable is defined in the program. A load accumulator
instruction (see Table 2-4) with the variable as the operand is added to

the program interpreter instructions area {1.1.5}.

4.3.2.3 Task 3 - The instruction to exit from the program is

added to the interpreter instruction area {1.1.5}.

4,3.2.4 Task 4 - If the user declared an argument list in the
NAME statement, the parameter string begins in KODE (517) and is a
mixture of internal codes for variables (see Section 4.4.2.2) and
delimiters in AMTRAN character codes (see Table 4-2). The parameter
string must be enclosed in parentheses; the variables must be separated
by commas; and the string must end with period - eof. The parameter
string is scanned and the variables are assigned new internal codes in
the order in which they occur; the first variable is assigned the number

401.

4,3,2.5 Task 5 - The entries in the variable table {1.2-1. 5}
which are not referenced in the parameter string are checked to deter-
mine if they appear to be undefined (column 4 is zero and column 5 is

negative). The names of all undefined variables are printed on the

70

typewriter. All entries not referenced in the parameter string are
assigned new internal codes beginning with the first 400 number after
the parameter variables (see Section 4.3.2.4). Next, new 400 codes
beginning with the next sequential number are assigned to any

temporaries used by the program (column 4 is one).

4.3.2.6 Task 6 - All of the interpreter instructions {1. 1.5}
generated for the program are reprocessed. The last instruction
pointer {6.} provides the location of the last instruction. In the repro-
cessing, all variable codes are replaced with the newly assigned codes.
This makes all variable and temporary references contiguous numbers
beginning with 401. All branch instructions are completed. When a
forward branch is entered in the SUPPRESS mode, subsystem 2 replaces
the statement number with 449 plus the row for that statement number in
the statement index table {1.2-1.3} (see Section 4.4.3.1). The program
NAM replaces this reference number with the correct displacement to
accomplish the branch, If the program is a function, all exit instructions
except the last are replaced with branches to the load accumulator

instruction added in task 2 (see Section 4.3.2.2).

4,3.2.7 Task 7 - The program is packed by removing unused
positions in the interpreter instruction area {1.1.5}, variable linkage
area {1.1.6}, user constants area {1.1.7}, and user program call
table {1.1.8}. Since the user constant area must begin in an odd sub-
script to access the constants in floating point, an unused word may
occur in the variable linkage area. As the program is packed, the first
three words of the program header are adjusted (see Figure 2-1). The
fourth word of the header is set to the number of parameters detected

by task 4. Words 5, 6, and 7 of the header are set to zero.

71

4,3,2.8 Task 8 - The compacted program is written on the user
program file {21.}, beginning at the record specified as the next avail-
able {21.2}. The statement count {18.} is written on the file behind the
program. That portion of the statement index table {1.2-1.3} containing
entries is written next with column 2 converted back to form 1. The
source statements for the program are transferred to the program file
from the system working file (either {20.1}, {20.2}, or {20.3}, depend-
ing on the statement entry mode {16.}). The source statements remain
packed two characters per word. The first available record {21.2} is
updated on the file. The file storage information required for the
program control table {21. 4} is entered in KODE in the three words
following the program name (see Section 4. 3.2,2). The type of entry
to the program RST {3. 4} is set to three.

4,3.3 Program EDT

Program EDT, shown in Figure 4-4, initializes the statement
index table {1.2-1. 3} and several indicators and counters in preparation
for editing a user program. Subsystem 2 recognizes the EDIT command,
locates the program to be edited on the program file {21.}, and provides

the following information to program EDT:

® EDIT statement in state 1 of statement conversion area
{ 1.2-1. l}

e Working register {4-2} - set to displacement relative to KODE
(510) at which the scan for statement numbers is to begin

@ FORTRAN record control {7.} - setto the record on the user
program file {21.} which contains the statement count for the
program.,

Program EDT sets the active program count {19.} to zero and

reads the statement count and the statement index table from the program

file. The input string is scanned, converting each statement number to

the same format as the numbers in column 1 of the table. If the statement

12

(:: ENTRY ::)
|

SET NUMBER OF ACTIVE PROGRAMS

READ STATEMENT COUNT AND STATEMENT
INDEX TABLE FOR PROGRAM FROM FILE

SCAN INPUT STRING TO VALIDATE NUMBERS
TO EDIT

MARK IN TABLE THE STATEMENTS TO BE
EDITED

MAKE NEW ENTRIES FOR STATEMENTS TO
BE INSERTED

SYSTEM

CURRENTLY SAVE CURRENT MODE PROGRAM
IN EDIT CONSTRUCTION INFORMATION

MODE?

l

TRANSFER STATEMENT TABLE TO COMMON
SET:
POINTER FOR USER PROGRAM FILE
POINTER FOR SYSTEM WORKING FILE
POINTER TO LAST STATEMENT EDITED

PREVIOUS VARIABLE COUNT
STATEMENT COUNT

STATEMENT ENTRY MODE
OUTPUT EDIT HEADING

]

«»

FIGURE 4-4. PROGRAM EDT

3

number appears in the table, the sign of the corresponding entry in
column 2 (which is the source statement length) is reversed to indicate
‘the statement is to be edited. If the statement number does not appear
in the table, but is within the number range, a new entry is inserted
into the table, keeping the statement numbers in sequential order. The

corresponding entry in column 2 is set to zero.

After completion of the scan, the statement entry mode {16.} is
checked. If the system is currently in the conversational or the SUPPRESS
mode, the following program construction information for the current

mode is stored on the system file {20.5-1}:
e Program construction area {1.1}

e Overlay I {1.2- 1}, except the statement conversion area
{1.2-1.1}

e All other variables named in COMMON, except the data table
{2.} and the number of user programs {14.}.

The modified statement index table is transferred to COMMON {1. 2-1, 3}

and the following are initialized for editing:

® Source statement record pointer {3.2-1} - set to record at
which first source statement begins on the user program file

e Source statement record count {3.6} - set to one
e Pointer to last statement edited {3.3} - set t§ zero
e Previous variable count {1.1.3} - set to zero
e Statement count {18.} - set to zero
e Statement entry mode {16.} - set to three.
As a final task, the label EDIT is output on the typewriter.

4.3.4 Program DLT

Program DLT, shown in Figure 4-5, makes deletions on the

user program file {21.} and in the user data area {1.3.1} in response

74

ENTRY

SAVE ALL

SCAN INPUT STRING

OR END COMMAND?

SUBPROGRAM AJS

FREE UP ALL

FREE SPECIFIED
TEMPORARY
STORAGE STORAGE

SUBPROGRAM AJS

FREE SPECIFIED
STORAGE

#1 FOR PROGRAM AND/OR
VARIABLE REFERENCES

PROGRAMS
SPECIFIED FOR
DELETION?

DELETE ALL VARIABLES
NOT IN SAVE
STATEMENT

FREE ALL ASSOCIATED
DATA STORAGE AND
TEMPORARY STORAGE

!

PACK REMAINING ENTRIES
IN VARIABLE TABLE

CLEAR REMAINDER OF TABLE

&

READ PROGRAM CONTROL TABLE AND
DELETE ENTRIES FOR PROGRAMS
SPECIFIED IN DELETE STATEMENT

PACK UP REMAINING ENTRIES
| UPDATE NUMBER OF PROGRAMS
CHANGE FILE STATUS WORD

ON FILE

VARIABLES
SPECIFIED FOR
DELETION?

DELETE VARIABLES
SPECIFIED IN
DELETE STATEMENT

FREE .UP ASSOCIATED
DATA STORAGE AND
TEMPORARY STORAGE

AND SET VARIABLE COUNT
ADJUST VARIABLE LINKAGE
AREA

l

PACK REMAINING ENTRIES IN
DATA TABLE AND SET ENTRY COUNT

ADJUST VARIABLE LINKAGE AREA
SET RST CONTROL®

b EXIT

FIGURE 4-5.

PROGRAM DLT

SUBPROGRAM AJS

FREE SPECIFIED
STORAGE

75

to the commands SAVE, DELETE, SAVE ALIL, and END. The commands
are recognized by subsystem 2 which sets the type of entry to program DLT
{3.7-1} to one of the following values:

1 - SAVE or DELETE command

2 - SAVE ALL or END command.
On a SAVE or DELETE command, the program DLT will scan the state-
ment string which appears in state 2 of the statement conversion area
{1.2-1.1} to determine the programs and/or variables to be deleted or
the variables to be saved. The statement string is in internal codes,
with variable and/or program references separated by commas which
have internal code 268. The string is terminated by the number 99. The
actual program names appear in the program call table {1.1.8}. A
program reference code appearing in the input string is 100 plus the
column in the table which contains the program name, Similarly, a
variable reference code is 400 plus the number of the row in the variable

table {1.2-1,5} in which the variable name is stored.

The user program file {21.} is affected only by a DELETE
statement containing program references., The specified programs are
deleted from the user program table {21.4} on the file. The file status
word {21.1} is set to one; the number of user programs {14.} and {21, 3}
is updated; and the type of entry to RST {3.4} is set to four.

The SAVE ALL and END commands and the DELETE and SAVE
statements containing variable references will cause program DLT to
free up all data storage currently being used for temporary results and
for the system accumulator. Temporary storage is in use if any non-
zero entries exist in any of the 30th through 50th positions of the variable
linkage area {1.1.6} and if a nonzero entry points to a row in the data
table {2.} which also has nonzero entries. Storage for the system
accumulator is allocated if the 90th row of the data table is not zero.
When storage is freed by program DLT, the corresponding row in the

data table and the variable link pointing to that row are set to zero.

76

In addition to temporary storage and the system accumulator,
those variables specified in a DELETE statement are deleted from the
variable table {1.2-1.5} and the associated data storage is made avail-
able for further use. Program DLT deletes all variables in the variable
table not referenced in a SAVE statement and makes the related storage

available.

When entries in the variable table are deleted, the table is altered
so that the remaining entries are in contiguous rows beginning in the first
row., Alterations are also made to the variable linkage area {1.1.6} to
maintain the one-to-one correspondence between the variable table
and linkage area. The previous variable count {1.1.3} is set to the

number of variable names remaining in the table.

When all data storage to be freed has been processed, the entries
remaining in the data table {2.} are moved to the top of the table and the
references remaining in the variable linkage area and the data table
entry count {10.} are adjusted accordingly. The type of entry to program
RST {3.4} is set to two.

4.4 SUBSYSTEM 2

4,4,1 Program RDLL

The main task of program RDLL is to read AMTRAN source
statements. The functions involved, shown in Figure 4-6, can be divided
into thirteen tasks. The tasks are executed in order, unless otherwise

indicated.

4,4,1,1 Task 1 - Program RDLL ensures that Overlay I {1.2-1}
is in core. If not in core, the overlay is read from the system working
file {20.6}, with Overlay II {1.2-2} being first written on the system
working file {20, 7} if the active program count {19.} is not zero. The

overlay status {3.8} is set to one.

17

‘ ENTRY)

IF REQUIRED, SAVE OVERLAY II, READ
OVERLAY I AND SET OVERLAY STATUS

SYSTEM
WORKING
FILE

INITIATE
CARD
INPUT?

READ AND VERIFY EACH CARD IN PROGRAM

—

PROGRAM

CONVERT EACH STATEMENT TO AMTRAN
CHARACTER CODES

ON CARDS

PACK -EACH STATEMENT TWO CHARACTERS PER
WORD, SAVE ON FILE UPDATING STATEMENT
INDEX TABLE AND FILE POINTER

AFTER PROCESSING THE LAST STATEMENT,
SET STATEMENT COUNT, FILE POINTER AND
CARD STATUS

IF AN ERROR OCCURRED ON THE LAST
STATEMENT, RESET FILE POINTER AND
CLEAR ERROR INDICATOR

OTHERWISE, SET:

LAST PREVIOUS INSTRUCTION
POINTER

PREVIOUS VARIABLE AND PROGRAM
COUNTS

STATEMENT NUMBER
OUTPUT MESSAGE IF LAST STATEMENT

CLEAR VARIABLE TABLE ENTRIES
AS REQUIRED

SET VARIABLE COUNT AND PROGRAM
COUNT

SUBPROGRAM KYBRD

OUTPUT STATEMENT NUMBER

READ STATEMENT FROM KEY-
‘BOARD AND CONVERT T0
AMTRAN CHARACTER CODES

FIGURE 4-6.

78

READ STATEMENT FROM KEYBOARD,
SYSTEM WORKING FILE, OR USER
PROGRAM FILE .

IF IN THE EDIT MODE, AS REQUIRED,
UPDATE FILE POINTER AND LAST STATE-
MENT EDITED COUNTER

SYSTEM
WORKING
FILE

SYSTEM
WORKING
FILE

IF INPUT NOT FROM SYSTEM WORKING FILE, SAVE
STATEMENT ON FILE

IF INPUT FROM FILE, UNPACK STATEMENT
UPDATE FILE POINTER -

REMOVE STATEMENT NUMBER AND BLANKS
BEFORE EACH LINE IN STATEMENT

SET CHARACTER COUNT, WORKING REGISTERS

SYSTEM
WORKING
FILE

‘ EXIT ’

PROGRAM RDLL

4.4, 1.2 Task 2 - This task is performed only if program RDLL
is to initiate the input of a user program from punched cards. For each

statement, the following are done:
@ Increment the statement count {18.}
® Read set of cards comprising statement

@ Check that statement number is valid and in sequence and enter
it in column 1 of the statement index table {1,2-1.3} in the row
designated by the statement count.

® Remove any trailing blanks from each card image.

® Convert the statement from EBCDIC to AMTRAN character
codes checking for illegal characters. Table 4-2 contains the
AMTRAN character set and the corresponding character codes,

® Perform tasks 10 and 11,

The reading of cards is terminated when the NAME statement
has been processed. The source statement record count {3. 6} is set to
one, the statement count {18.} is set to zero, the card status {1.1,4} is

set to two, and task 4 is then performed.

4,4,1,3 Task 3 - If an error occurred on the last statement (the
error indicator {9.} is not zero), the source statement record count {3. 6}
is set back to its previous value using the column 2 entry of that row of
the statement index table {1.2-1.3} specified by the statement count {18.}.
The number of records on the system working file for the source state-
ment is subtracted from the record count, The error indicator {9.} is

set to zero and task 5 is performed.

4,4,1,4 Task 4 - The last previous instruction pointer {13.},
previous variable count {1. 1.3}, and previous program count {1.1.2}
are set to the current values, respectively, of the last instruction pointer

{6.}, variable count {15.}, and program count {1.1.1}. The statement

79

TABLE 4-2. AMTRAN CHARACTER SET AND CODES

Character Code Character -Code
0 0 P 26
1 1 Q 27
2 2 R 28
3 3 S 29
4 4 T 30
5 5 u 31
6 6) 32
7 7 W 33
8 8 X 34
9 9 Y 35

Blank 10 Z 36
A 1 * 37
B 12 / 38
C 13 + 39
D 14 - 40
E 15 & 4]
F 16 = 42
G 17 (43
H 18) 44
I 19 45
J 20 s 46
K 21 ; 47
L 22 $ 48
M 23 ' 49
N 24 End of Statement 50
0 25 Carriage Return 51

80

count {18.} is incremented by one. If its new value is 45 and the system
is not in the edit mode or the input is not from cards, a message is output,

informing the user that only one more statement may be entered.

4.4.1.5 Task 5 - If the previous variable count {1, 1.3} and
variable count {15.} are not equal, the rows of the variable table {1.2-

1.5} indicated by the two values are set to zero.

4.4.1.6 Task 6 - The variable count {15.} and program count
{1. 1.1} are set, respectively, to the current values of the previous

variable count {1. 1.3} and the previous program count {1.1.2}.

4.4.1.7 Task 7 - This task is performed if the system is in the
EDIT mode. If the statement count {18.} and the pointer to the last
statement edited {3, 3} have the same value, indicating an error occurred
on the last statement and the statement is to be reentered, the statement
number is extracted from the row in the statement index table {1.2-1,.3}
specified by the statement count and control goes to task 9. Otherwise,
program RDLL determines the type of entry for the current statement,
depending on the status of the column 2 entry of the current row of the

statement index table. The entry can indicate the following:

® ILess than zero - the statement is to be reentered by the user

® Equal to zero - the statement is to be inserted into the program
by the user

@ Greater than zero -~ the statement is not to be changed.

For the first case, the source statement record pointer {3.2-1} is set
to the location on the user program file {21.} of the next source state-
ment by subtracting the table entry from the current value of the pointer.
(The entry is the'negative of the length of the current source statement.)
The pointer to the last statement edited {3. 3} is set to the value of the
statement count {18. }, the statement number is extracted from the
statement index table, and control goes to task 9. When the entry is

zero, the same actions as described for the first case are taken with the

81

exception of incrementing the source statement record pointer. In the
last case, the source statement is read from the program file at the
place specified by the source statement record pointer. The length of
the statement is specified by the value of the table entry which is added
to the source statement record pointér after the read. Task 11 is then

performed.

4.4.1.8 Task 8 - This task is performed if the system is not in
the EDIT mode. In the conversational and SUPPRESS modes, the value
of the statement count {18.} is the statement number of the current state-
ment. This value is entered into column 1 of the current row of the

statement index table {1.2-1.3}.

4.,4.1.9 Task 9 - The statement number is converted to a string

of six characters in the form

dydp-d3d4b

where dy, ..., d4 are digits or blanks which replace only leading or
trailing zeros in the number. The characters, in AMTRAN character
codes, are placed in the first six words of an integer array which is to
be used as the input array for reading the source statement from the
typewriter keyboard. The program RDLL calls the subprogram KYBRD
to output the statement number, read the source statement, and convert
it to AMTRAN character codes. The length of the statement (stored one

character per word) is returned to RDLL in the working register {5.}.

4,4,1,10 Task 10 - Program RDLL adds a blank to the end of
the statement and packs the statement two characters per word, main-
taining the original unpacked form. The length of the packed form is
entered into column 2 (form 1) of the current row of the statement index

table {1. 2"'1. 3}t

82

4.4.1.11 Task 11 - The packed form of the source statement is
written on the system working file in the area (either {20.1}, {20.2}, or
{20. 3}) specified by the statement entry mode {16.} and at the displace-
ment in the area specified by the source statement record count {3.6}.
The record count is incremented by the length of the packed statement.

If the system is not in the EDIT mode, task 13 is performed next.

4.4.1.12 Task 12 - The packed source statement is unpacked

into one character per word.

4.4.1.13 Task 13 - The statement number, occupying the first
six characters, is removed from the source statement. For each carri-
age return appearing in the source sfatement, the next six sequential
characters, which are always blanks, are removed. The statement is
output in state 1 of the étatement conversion area {1,2-1,1}. To initialize
information for program SCA, the length of the statement is placed in
KODE (932), the working register {4.} and KODE (510) are set to zero,

and the working register {5.} is set to one.

4,4.2 Program SCA

Program SCA, shown in Figure 4-7, converts labels appearing
in an AMTRAN source statement to internal codes, recognizing the
special system labels RESET, SUPPRESS, END, NAME, EDIT, CARD,
LIST, and EXPLAIN which require an exit from subsystem 2.

The source statement is input to program SCA in state 2 of the
statement conversion area {1.2-1.1}. The statement appears as a
string of characters in AMTRAN character codes (see Table 4-2) with
one character per word. Program SCA scans along the string, processing
one character at a time. For compactness, the output string is generated

in the same array that contains the input statement. (This is possible

83

YIS Wv¥90dd “/Z-¥ FN9Id

SYOLVIIANI
a3INdIY 138

3sn 3LVAITVA

L W3LSASENS HO
1587 04 LIX3

SYOLYIIGNI
aNINO3Y L3S

S
, 01v43d0
oNFS D3 < W123ds Ag
ON S ON 03039344
a8
QIYINOIY SV SNOILONNG TWIDIAS Wi0H¥3d
1NNQD
JTEVINVA INIWTUONI ONV 318V1 TT18VINVA NI.
138V ¥3INI ‘N0 LON SI HOLYW Y NIHM 37avL
SYOLYIIANI 135 INNDD WY4S0Yd DNILNIWRONI *Q303aN SV 1313719345
11x3 W04 Q3YINDY 79VL TTVI Wvdo0dd NI SITYINI 3LvI¥D
NI 1ndino 3ovid 9NIYLS 10dLNO NI 300D HOYIS WYIDO0YdENS

TYNYIINI ¥TINT SUADI0 HOLVW NIHM
SIT4VL 40 3718VL ILVIYdOHddY HIWYIS

314 WVY¥90ud
43S WO¥d I79VL WYAI0Ud ¥3sn Qvy

314 T04INGD
WILSAS WOdd 318VL 738V WALSAS (V3Y

$QIINDIY SV

QY0M ¥3d SYILIVIVHD OML
JMJvd GNV 139V 30 H3ANIVWIY NIvido

L W3LSASans
0l LIX3

SYOLVIIONT
a3yIndbI]Y 135

EQIE!
- 1041NOO
W3LSAS

SANVIE VHLIX3 ONIAOWIY
ONIYULS Indino OL
d3LOVUVHD YIISNVAL

& YILIVHVHD

YILIVYVHD
— 1sv1

LXIN OL 3AOW

|

EYILIVEVHD
J1138VHd Y

43LIVHYHI
1SH4Id HI3IHI

3LV Lnd
=10 IZIWILINI

AYINI

84

since labels compress to one-word internal codes.) To reduce storage
requirements, the working indicators needed by SCA are set by program

RDLL (see Section 4.4.1.13).

As program SCA scans the input string, non-alphabetic characters
are transferred to the output string, omitting unnecessary blanks. When
an alphabetic character occurs, any additional characters are obtained,
the label is classified, and an internal code representing the label is
placed in the output string. The tasks involved in the label conversion
will be discussed in detail. The scanning process continues until the
string is totally processed or a special exit is required. When a complete
statement has been scanned by program SCA, the output string is placed
in state 2 of the statement conversion area and the following indi'cators
are set for program SCB:

e Indicator {4-3} - set to the displacement relative to KODE (510)
at which the statement begins

® KODE (933) - set to one
® Working register {5.} - set to one.

Before any exit, the output parameter from program SCA is set to one

of the following values:

1 - continue execution in subsystem 2

2 - route system flow to subsystem 1, entry 1 for normal
initialization

3 - route system flow to program LST for processing of LIST
or EXPLAIN

4 - route system flow to subsystem 1, entry 2 for program
control

5 - route system flow to subsystem 1, entry 2 for program
control

85

6 - route system flow to subsystem 4 to output error message

7 - route system flow to subsystem 1, entry 3 for data area

control.
When a label has been detected by program SCA, the first six
characters are compared with entries in the following four tables, in

the order listed:

System label table {22.1}
Variable table {1.2-1.5}
Program call table {1.1.8}
User program table {21.4}.

o
°
°
o
The labels in each table are packed two characters per word, The last
three tables are searched only if they contain entries as indicated by the
respective values of the variable count {15.}, the program count {1.1.1},
and the number of user programs on file {14.}. However, the user
program table rather than the program call table is searched when the
label to be matched is immediately preceded by one of the system labels:
LIST, EDIT, or NAME. The first three tables are not searched if the
label contains only one character. Both the system label table and the
user program table are stored on file and read into core at the first
occurrence of a label requiring a search of the particular table. The
actions taken when a match to the label is found in one of the four tables

and when the label does not occur in any of the tables is described in the

following discussions.

4,4.2.1 System Label Table - Table 4-3 shows the contents of

the system label table which is on the system control file {22.}. The
first six entries are labels for which program SCA must take immediate
action., The 200 numbers are the internal codes to be used for the label

throughout the remainder of subsystem 2 and are 200 plus the interpreter

86

Label

RESET
SUPPRESS
END
CARD

T0

ALL
TYPEOUT
LIST
EDIT
NAME
ARRAY
IF

THEN
ELSE
REPEAT
LAST
PAUSE
EXIT

SQ
INTERVALS
GO
DELETE
SAVE

LT

GT

EQ

NE

GE

TABLE 4-3. SYSTEM LABEL TABLE

Internal or
Control Code

212

209
1001
1002
1003

701

702

703

704

705

709

706

707

708

709

710

275

276

213

214

215

216

217

Label

LE

SuB
INPUT
MIN
MAX
TYPE
ABS
TANH
SUM
TAB
EXPLAIN
SUMF
MAGNITUDE
PI
DEGREES
SIN

Cos

LN

EXP
SQRT
ATAN
POW

GO TO
THRU
SHIFT
PUNCH
RANGE

Internal or

Control Code

218
243
204
229
230
711
236
237
238
7113
1004
232
239
397
399
247
248
234
249
250
235
258
212
269
223
712
701

87

operator code (see Table 2-4) for the label. The two 300 numbers are
system constants. The 700 numbers are operators which require special
action by program SCB, and the 1000 numbers are labels which require

special but not immediate action by program SCA.

Upon recognition of one of the six labels which appear first in the
table, the described actions are taken:
® RESET: Set the statement entry mode {16.} to one and the

previous variable count {1. 1.3} to zero; exit to subsystem 1,
entry 1.

e SUPPRESS: Set the type of entry to RST {3. 4} to four; exit to
subsystem 1, entry 2,

® END: When entered in the conversational mode, set the type
of entry to DLT {3.7-1} to two; exit to subsystem 1, entry 3.

When entered in the SUPPRESS or EDIT mode, take the same
actions as for SUPPRESS.

® CARD: Take the same actions as for SUPPRESS,

® TO: Replace with a blank the code for the label GO, which is
in the output string; enter the code for TO in the output string;
continue processing the statement,

-

® ALIL: If preceded by the label LIST, set the type of entry to
program LST {3.10-1}; exit to program LST.

If preceded by the label EXPLAIN, set the output entry number
{3.9-1} to 39; set the type of entry to program LST {3.10-1}
to zero; exit to program LST.

If the label matched is not one of the first six entries in the
system label table, the number provided in the table (column 4) is placed
in the output string. If the system label is preceded by the operator
EXPLAIN, program SCA sets the type of entry to program LST {3.10-1}
to zero and the output entry number {3.9-1} to the position in the table

(the row number) of the label just located and exits to program LST.

88

If the system label is TYPEOUT, program SCA places the
TYPEOUT code in the output string and locates the first prime, which
is the beginning delimiter for the message. Beginning with first character
following the prime, the message is packed two characters per word and
placed in the output string, beginning in the second word after the TYPE-
OUT operator. The packing is continued until the terminating prime is
encountered, packing a blank in the last half word if required. A word
count is stored in the output string immediately behind the TYPEOUT
operator. The count is the number of words required for the packed form.
Processing of the input statement is continued, starting with the first

character after the closing prime.

4.4.2.2 Variable Table - Program SCA searches the labels

currently entered in the variable table {1.2-1.5} to determine if the

label is a variable name. The number of rows to be searched, beginning
with row one, is specified by the current value of the variable count {15, }.
When a match is found, the corresponding variable reference number is
entered in the output string. The reference number is 400 plus the number
of the row containing the variable name. If the variable is immediately
preceded by the operator NAME, the packed variable name followed by

a blank in AMTRAN character code is placed in the next four words of

the output string following the variable reference number.

4,4.2.3 Program Call Table - The current value of the program

count {1.1.2} determines the number of columns, beginning with column
one, in the program call table {1. 1. 8} which are searched. The
corresponding program reference number is placed in the output string
upon a match. The reference number is 100 plus the number of the

column containing the program name.

4,4,2.4 User Program Table - The number of rows in the user

program table {21. 4} searched, beginning with row one, is specified by

the number of programs stored on file {14.}. When a match occurs

89

and the label is not preceded by one of the special system labels, i.e.,
LIST, EDIT, or NAME, and the system is in the conversational or
SUPPRESS mode, the program count {1.1, 2} is incremented, the pro-
gram name is entered into the corresponding column of the program
call table {1.1.8}, and the program reference number which is 100
plus the program count is entered into the output string. The same
actions are taken if the system is in the EDIT mode and the program
name is not the name of the program being edited. If the names are
the same, no action is taken, as if a match was not found. The names
are the same if the row in the user program table is the same as the

location in the table {3.1-1} set when the EDIT was initiated.

If the program name is preceded by one of the special system

labels, the appropriate actions are taken:
e LIST

A Set the type of entry to LST {3.10-1} to the length of the
source form of the program. The length is obtained
from column 6 of the program table.

A Set the LIST control {3.9-2} to the record number on the
user program file {22.} at which the internal form of
the program begins. The record number is in column 4
of the program table.

A Exit, routing system flow to program LST,
e EDIT

A Set the program table location {3.1-1} to the row in the
program table containing the program name.

A Set the FORTRAN record control {7.} to the record on
the user program file {22, } which contains the program
statement count. The record number is in column 5 of
the program table.

Ao Exit, routing system flow to subsystem 1, entry 2.

90

e NAME (valid only in EDIT mode)
A Place a zero, the three word program name, and an
AMTRAN character coded blank in the next five words
of the output string.

4 Continue processing the input statement.

4,4,2.5 Label Not Appearing in Tables - When a label has not

been matched with an entry in one of the four tables, it is entered in
the variable table {1.2-1,5}. The variable count {15.} is incremented,
the label is entered in the corresponding row of the variable table, and
the variable reference number (40'0 plus the variable count) is placed

in the output string.

4.4.3 Program SCB

Program SCB completes the conversion, initiated by program
SCA, of an AMTRAN source statement from a string of characters to
a string of internal codes. Program SCA has already converted label
strings to internal or temporary codes. Program SCB scans the input
statement and converts the remaining éiigital and special characters to
internal codes; performs special formatting for the operators ARRAY,
PAUSE, REPEAT, EXIT, SQ, INTERVALS, TYPE, PUNCH and TAB,
and for the IF statement; and recognizes the data control commands

DELETE and SAVE upon completion of the statement conversion.

The partially converted statement is input to program SCB in
state 2 of the statement conversion area {1.2-1,1}. The displacement
relative to KODE (510) at which the statement begins is provided in the
working register {4-3}. For convenience, two indicators, KODE (933)
and the working register {5.}, used by program SCB have been initial-

ized by program SCA to one.

The fully converted statement is output in state 3 of the statement
conversion area {1.2-1.1}. In addition, the program SCB outputs a

parameter which is set to indicate one of the following:

91

1 - Continue statement translation.

2 - Route system flow to subsystem 1, entry 3 for processing
of a DELETE or SAVE statement.

3 - Route system flow to subsystem 4 for output of an error
message.
The input string is a mixture of the following AMTRAN charac-
ter, internal, and special codes:

@ All character codes listed in Table 4-2, except those for the
alphabetic characters

® Program and variable references (numbers in the ranges
101 through 110 and 400 through 429, respectively)

® The operator and special codes listed in Table 4-3 (numbers
in the ranges 201 through 269 and 701 through 713, respec-
tively).

The ouput string consists of numbers in the range 99 through 494
which have the following designations:

99 : end of statement

101 - 110 : program references

201 - 269 : operators and delimiters

301 - 355, 386 - 399 : constant references

400 -~ 430 : variable references

450 - 494 : statement references.

The program and variable reference numbers are assigned by
program SCA and explained in the description of that program (see
Section 4.4.2)., Table 4-4 lists the operators and delimiters and their
corresponding internal codes. The constant and statement reference

numbers are generated by program SCB and are discussed in the

following program description.

92

Code
201
203
204
205
206
207
209
212
213
214
215
216
217
218
222
223
229
230
231
232
234
235
236

TABLE 4-4.

Operator or
Delimiter

EXIT
PAUSE
INPUT
TYPE
PUNCH
TAB
TYPEOUT
GOTO
LT

GT

EQ

NE

GE

LE
ARRAY
SHIFT
MIN
MAX
INTERVALS
SUMF
LN
ATAN
ABS

Code

237
238
239
241
242
243
247
248
249
250
251
258
259
260
261
262
263
264
265
266
268
269
275
276

OPERATOR AND DELIMITER CODES QUTPUT
BY PROGRAM SCB

Operator or
Delimiter

TANH

SUM
MAGNITUDE
THEN

ELSE

SuB

SIN

cos

EXP

SQRT
NEGATION
EXPONENTIATION

*

/

+

- (SUBTRACT)

THRU
DELETE
SAVE

93

The input elements can be grouped into the following types:

Type Elements

1 Digits zero through nine

2 Operator TYPEOUT

3 Program references, variable references and all
operators not of types 2, 4, and 5

4 Relational operators

5 Operators which require special formatting (those
numbers in the range 701 through 713)

6 Special characters,

The processing of the input elements is shown in Figure 4-8 and

described in the following discussions,

last element entered into the output string is checked.
is the GO TO operator (code 212), the digit is part of a statement num-

ber which can appear in the input string in any of the forms listed below

4.4.3.1 Type 1 - When a digit occurs in the input string, the
If the element

where d represents a digit and is set to one in the examples in paren-

theses.

a (1) dd.d (11.1)
d. (1.) dd.dd (11.11)
ad (11) .d (. 1)

dd. (11.) .dd (. 11)

The statement number is replaced by a statement reference

which is 449 plus the number of the row in the statement index table

{1.2-1. 3} which contains that statement number. In the conver-

sational mode and in the SUPPRESS mode with typewriter input, the

statement number is also the row number. In the EDIT mode and

when input is from cards, the table must be searched to determine the

row number.

94

ENTRY

INITIALIZE OUTPUT
PARAMETER

CLASSIFY FIRST
ELEMENT

CLASSIFY NEXT . |,

INPUT ELEMENT

PRECEDED
BY GO TO
OPERATOR?

CONVERT DIGITAL STRING TO STATE-
MENT NUMBER

LOCATE STATEMENT IN STATEMENT INDEX
TABLE

PLACE REFERENCE NUMBER IN OUTPUT
STRING

INCREMENT CONSTANT COUNT
PLACE CONSTANT REFERENCE

CONVERf DIGITAL STRING TO NUMERIC CONSTANT
ENTER CONSTANT IN CONSTANT AREA IF REQUIRED,

IN QUTPUT STRING

TRANSFER TYPEOUT OPERATOR, WORD
COUNT, AND MESSAGE TO OUTPUT STRING

REQUIRED

TRANSFER CODE TO OUTPUT STRING
FOR VARIABLES, CHANGE STATUS AS

FORMATTING OF IF TEST

PLACE RELATION IN OUTPUT STRING
| ADD CODES TQ OUTPUT STRING FOR SPECIAL

FORMATTING REQUIRED

PERFORM OR INITIATE SPECIAL

AS REQUIRED :

PROCESS VARIABLE TABLE

PLACE INTERNAL CODE IN QUTPUT STRING
PERFORM SPECIAL FORMATTING

PROCESS VARIABLE TABLE

COMPLETE ANY SPECIAL FORMATTING AS
REQUIRED

PLACE 99 IN OUTPUT STRING

DELETE OR
SAVE
STATEMENT?

VALIDATE USE

SET OUTPUT
PARAMETER

FIGURE 4-8. PROGRAM SCB

EXIT 10
SUBSYSTEM 1

95

When the first digit in a string is not preceded by the GO TO
operator, the digital string, which may contain a decimal point, is
converted to a constant reference. The reference is in either the
range 301 through 354 or the range 386 through 399 and refers to
either a user constant or system constant, respectively. The digital
string is converted to the corresponding floating point representation,
compared with the system constants {1. 3.2}, and replaced by the
corresponding reference, if possible. Table 4-5 lists the system
constants and reference numbers. If it is not a system constant, the
number is compared with any constants appearing in the user constants
area {1.1.7}. The number of entries is specified by the value of the
constant count {11,}. If the number does appear, the corresponding
constant reference is 300 plus the row in which the number is entered
in the constant area., When the number does not already appear, it
is entered in the next available row in the constant area, the constant
count is incremented, and the corresponding constant reference is
assigned. All constants are entered as positive numbers. For nega-
tive numbers, the minus sign has already been processed and the

appropriate operator placed in the output string (see Section 4. 4. 3. 6).

4.4.3.2 Type 2 - In the input string, the operator TYPEOUT
is immediately followed by a word count specifying the number of
sequential words which contain the user message to be output. The
operator, word count, and message are transferred directly to the

output string.

4.4.3.3 Type 3 - The elements of this type are transferred
directly to the output string, For a variable reference, the corre-
sponding column 4 and column 5 entries in the variable table {1.2-1.5}

are summed, If the sum is positive, no action is taken, When the

sum is negative, the entry in column 4 is set to zero. If the sum is

96

TABLE 4-5. SYSTEM CONSTANTS AND REFERENCE NUMBERS

Constant Reference
0.0 386
.0 387
2.0 388
3.0 389
4.0 390
5.0 391
6.0 392
7.0 393
8.0 394
9.0 395
10.0 396
3.1415927 397
57.2958 398

0.0174533 399

zero, the element preceding the variable reference in the output string
is checked. If the element is INPUT (code 204), the columns 4 and 5
entries are set to one; otherwise, the column 5 entry is set to minus

two.

4.4.3.4 Type 4 - The processing of a relational operator is part
of the special formatting performed for an IF test (see Section 4. 4. 3.5).
Program SCB places the following elements in the output string in the
order listed: right parenthesis, subtract, left parenthesis. The rela-
tional operator is inserted in the output string before the first relational

argument (see Section 4. 4. 3.5).

4.4.3.5 Type 5 - The operators of this type, with the exception
of INTERVALS, require the addition of codes to the output string to
simplify the next phase of the translation process. For INTERVALS,
program SCB determines whether the label is used as a subscript
argument or as a function operator by checking the last element in the
output string. If the last element is either SUB or THRU (codes 243
and 269, respectively), subscripting is the use and a 400 is placed in
the output string. Otherwise, INTERVALS as a function operator (code
231) is placed in the output string.

The formatting for PAUSE, EXIT, and SQ is done immediately,
The operator codes for PAUSE and EXIT (see Table 4-4) are placed in
the output string and followed by the dummy variable reference number

400, Operator SQ is replaced by the codes for the string: POW 2. 0.

Operators ARRAY, TYPE, PUNCH, and TAB cannot be totally
reformatted when first encountered. For each, the formatting consists
of enclosing the associated arguments in parentheses. The left paren-
thesis is placed directly behind the operator code in the output string.
The matching right parenthesis is placed in the output string when one

of the following occurs in the input string:

98

Semicolon

THEN

ELSE

End of statement

or when a comma occurs and the following conditions have been met for

the indicated operator:
® ARRAY - three arguments have been processed.

e TYPE, TAB, and PUNCH - the secondary parentheses count
is balanced (see Section 4. 4. 3.6).

The IF test, whether appearing as a statement or as an embedded

substructure, is reorganized from the general input form
IF a, relation a, THEN 8;,..., S
ELSE ty,..ety
to the output form
relation ((a;) - (az)), THEN (sy,..., 8p),

ELSE (tl, e s 0y tm)

where
relation - one of the relational operators
ay and a, - the arguments for the relation
S1s+0.5 Sy and ty, ..., ty, - the substatements comprising the

THEN and ELSE clauses, respectively;
n and m may be one or greater,
Program SCB keeps count of the number of IF tests which are
currently being reformatted in order to correctly delimit embedded
IF tests. When an IF operator is encountered, program SCB counts the
IF test, leaves a one-word gap in the output string to be filled in with
the relational operator (see Section 4. 4. 3.4), and places two left

parentheses in the output string.

99

To keep track of THEN/ELSE pairs and to handle any ELSE
clauses which do not appear in the input statement, the program main-
tains a control table. When a THEN occurs, the THEN is entered in
the control table. If the last element in the output string is a comma,
it is deleted. To the output string are added any right parentheses
required to complete an ARRAY sequence and/or a TYPE, PUNCH, or
TAB sequence. The following sequence is then placed in the output
string:

Right parenthesis
Right parenthesis
Comma

THEN
Left parenthesis

When an ELSE occurs and the last entry in the control table is an ELSE:
® Remove the ELSE and the matching THEN from the table.
e Decrement the IF test count.

® Place a right parenthesis in the output string.

This sequence is continued until a THEN is the last entry in the control
table. The tasks listed for the THEN operator are then performed using
an ELSE instead of a THEN. The formatting of the IF test is completed

when a semicolon or an end of statement occurs (see Section 4, 4. 3, 6).
The REPEAT statement is input in the form
REPEAT n, Sy3,+445 Sm

where n is the number of times the substatements s;,..., s,,, are to be

executed. Program SCB places the statement in the form
R=0, R=R+ 1, LE (R - (n)),
THEN (83, ¢4+, Sm» GO TO 355)

where R refers to a special temporary variable (code 430) which is

used only in REPEAT statements and for counting the execution loops;

100

zero (0) and one (1) are system constants (codes 386 and 387, respectively);
LE is the relational operator less than; and the number 355 is a dummy
reference number used only in REPEAT. When the REPEAT operator
occurs in the input string, the codes for the following sequence are read

from the system control file {22.2} and placed in the output string:

Repeat temporary
Equal

System constant 0.0
Comma

Repeat temporary
Equal

Repeat temporary
Plus

System constant 1.0
Comma

LE

Left parenthesis
Repeat temporary
Subtract

Left parenthesis.

The formatting is continued when the first comma occurs and is com-

pleted on the end of statement (see Section 4. 4. 3. 6).

4.4.3.6 Type 6 - For the following special characters, program
SCB takes the action indicated:

® Blank, period, carriage return - None : skip to next input
element.

e Plus sign, slash, ampersand - Place the operator code (see
Table 4-4) in the output string.

e Asterisk - If the next element in the input string is an asterisk,
place the exponentiation operator in the output string and skip
the second asterisk; otherwise, place the multiplication opera-
tor in the output string.

e Minus sign - If the last element entered in the output string is
a right parenthesis, THRU, constant reference, or variable

reference, place the subtract operator in the output string;
otherwise, place the negation operator in the output string,

101

e Equal sign - Make the first undefined user variable entered
in the variable table {1.2-1.5} defined: set to one the entry
in column 4 which corresponds to the first negative entry in
column 5; and place the equal in the output string.

Left and right parentheses are always entered directly into the

output string. Throughout the processing of a statement, program

SCB checks for parentheses pairs in the input statement to ensure that
the parentheses are balanced, In addition, to ensure that the parentheses
added to a statement by SCB (see Section 4. 4. 3.5) do not change the
meaning of the statement, a secondary parentheses count is maintained.
The count becomes active on a left parenthesis in the input statement
when the last entry in the output string is either a program reference

or the operator SHIFT, or when the second to last entry is one of the
operators TYPE, PUNCH, or TAB, The count is inactive when the

parentheses become balanced within that portion of the string being

currently processed.

The comma is a key delimiter in the reformatting of the REPEAT
statement and the operators ARRAY, TYPE, PUNCH, and TAB (see
Section 4. 4.3.5). When a comma in the input string is the first comma
to occur after a REPEAT operator, the following sequence is placed
in the output string:

Right parenthesis
Right parenthesis
Comma

THEN
Left parenthesis.

Also, the status of all current user variables is finalized in the variable

table {1.2=1.5} by setting all negative entries in column 5 to one, I

the comma is not the first comma after a REPEAT, the comma is placed
in the output string after adding any right parentheses required for the
ARRAY, TYPE, PUNCH, and TAB operators. The conditions for inserting
the right parentheses are detailed in Section 4.4.3.5.

102

Upon a semicolon, any right parentheses required for these four
operators are inserted and an additional right parenthesis is placed in
the output string. If the last entry in the control table (see Section 4. 4. 3, 5)
is an ELSE, the last THEN and ELSE are removed from the table, If
the last entry is a THEN, the THEN is removed from the table and the
following sequence is entered in the output string:

e Comma

e ELSE
In either case, the IF count is decremented and the next input element is

checked. If the element is not a semicolon, the actions described for a

comma are taken.

When the end of statement character occurs, program SCB first

verifies that the total parentheses are balanced. The program then
completes the special formatting for the Type 5 elements., One right
parenthesis is added to the output string for each of the following oper-
ators which are in the process of being formatted:

e ARRAY

e TYPE, PUNCH, or TYPE

e IF (may be more than one),
To complete a REPEAT statement, the following sequence is added to
the output string:
Comma
GO TO

The dummy statement reference number 355
Right parenthesis.

In all cases, the status of all variables is finalized by making all entries
in column 5 of the variable table {1, 2-1, 5} one, and the termination
code 99 is placed in the output string. If the first element in the string

is a DELETE or SAVE, the output parameter is set to two.

103

4.5 SUBSYSTEM 3

4,5.1 Program STK

Program STK, shown in Figure 4-9, converts the internal
statement string generated by subsystem 2 to the equivalent post-fix
Polish stack. The input string is provided in state 3 of the statement
conversion area {1.2-1.1}. The stack is output in state 4 of the state-

ment conversion area,

The input string and output stack consist of numbers in the range
99 through 494 which have the following designations:

99 : end of statement

101 - 110 : program references

201 - 273 ; operators and delimiters

301 - 355, 386 - 399 : constant references

400 - 430 variable references
450 - 494 statement references.

The stack generated by program STK is a string in which the
priority of operations is provided by the operational sequence from
left to right. The operations of highest priority within a term are
leftmost in the string. For each operation, the associated operands
immediately precede the operation. The task of program STK is to
scan the input string and reorder it, based on operation priorities, to
generate the output stack, The reordering is accomplished using the
output stack and a delimiter list which functions as a last-in, first-

out stack.

Since only operations are reordered, statement, constant, and
variable reference numbers are transferred to the stack as they occur
in the input string. To remove implied multiplication, the multiply
operator is inserted into the string after a constant or variable refer-

ence when the next input element is one of the following:

104

o

|

CHECK FIRST
INPUT ELEMENT

CONSTANT
OR YARIABLE
REFERENCE?

MULTIPLICATION

PLACE REFERENCE

ON STACK » CHECK NEXT ELEMENT
REMOVE ANY IMPLIED 1 IN INPUT STRING

AS REQUIRED:

DUMP OPERATIONS OF HIGHER
PRIORITY FROM DELIMITER LIST

VALIDATE SUBSTATEMENTS OR
PARAMETERS

DELIMIT PARAMETER STRINGS
DELIMIT SUBSCRIPTS

ENTER OPERATOR OR DELIMITER
ON DELIMITER LIST

IF TYPEOUT, PLACE DIRECTLY ON
STACK

END OF

STATEMENT?

FIGURE 4-9. PROGRAM STK

105

Constant reference

Variable reference

Left parenthesis

Program reference

The operators listed in Table 4-4 with codes less than 258,

Within arithmetic expressions, the order of computation is deter-

mined by

the relative priorities of the operations - the operation of

highest priority being done first. The priority of operations is:

1.
2.
3.
4.
5,
6.
Te

Operations within parentheses

Functions (such as user defined functions, SIN, ARRAY, etc.)
Exponentiation and negation

Multiplication and division

Addition and subtraction

Relational operations

Concatenation.

Program names have been replaced by program references which

are in the range 101 to 110, and operations and delimiters have the 200

range numbers listed in Table 4-4. Thus, the numbers assigned closely

parallel the inverse order of priority, Program STK uses this charac-

teristic in generating the stack. Operators are placed in a delimiter

list after

first ""dumping'' any operation of higher priority from the list

to the stack. Except for priority levels 2 and 3, operations of the same

priority are also dumped.

Parameter strings are placed in the stack preceding the asso-

ciated operator. The parameters are blocked off in the stack by the

addition of matching delimiter pairs, The left delimiter has code 273

and the right delimiter has code 272. The left delimiter is placed in

the stack

and the right delimiter is placed in the delimiter list behind

the operator when a program reference or one of the following opera-

tors occurs:

106

ARRAY
TYPE
TAB
PUNCH
SHIFT.

When the parameter string is enclosed in parentheses, the left paren-
thesis is placed in the delimiter list between the operator and the right
parameter string delimiter so that the matching right parenthesis will
_eventually dump the right delimiter. The parentheses do not get placed

in the stack.

Subscripts are similarly bracketed. However, the subscript
modification appears behind the variable reference rather than before
it in the output stack. The left subscript delimiter (code 271) is placed
in the stack when operator SUB occurs and replaces the SUB. The
right subscript delimiter has code 270.

The operation priority list presented previously is not sufficient
to handle all of the input operators and delimiters appearing in Table
4.4, In the following discussions, those operators and delimiters which
obviously do not fall into the priority levels two through seven will be

explained,

The label delimiters THEN, ELSE, GO TO, INPUT, TYPE,
PUNCH, TAB, PAUSE, and EXIT, and the noncomputational commands
are treated as having the priority of a functional operator (level 2). The
functional operators cannot dump anything in the delimiter list and are

simply added to the list.

The operator TYPEOUT is an exception in program STK. The
operator TYPEOUT is followed in the input string by a word count which
specifies the number of subsequent words which contain the user message
to be output. The operator, word count, and message are transferred in

order directly to the output stack.

A left parenthesis is entered directly on the list. A right paren-
thesis will dump all entries on the list until either the matching left

parenthesis or a subscript delimiter is found. In the first case, the

107

left parenthesis is deleted from the list. In the second case, the right
subscript delimiter is placed in the stack. Parentheses are never

entered in the stack.

The only entry an equal can dump from the delimiter list is a
right subscript bracket. The equal is always placed in the delimiter

list,

The operator THRU dumps all entries in the delimiter list until
a subscript delimiter occurs. The THRU is then discarded: the THRU

is not placed on the stack or in the list.

The comma causes everything on the delimiter list to be dumped
until either a left parenthesis or a parameter string delimiter is encount-
ered, If the parameter string delimiter is preceded by a left parenthesis
in the list, the parameter string delimiter is dumped to the stack and the
dumping continues. The comma is never placed on the delimiter list. It
is placed in the stack after all dumping has been done if the comma does

not occur inside parameter string delimiters.

The end of statement (code 99) dumps everything from the delimiter

list to the stack. The end of statement is then placed on the stack,

A further task which program STK performs is a validity check
on substatements and parameter strings. The last element entered in

the stack is checked
e After a comma is processed

e After everything has been placed in the stack on an end of
statement

® Whenever a parameter string right delimiter is the next
element to be placed on the stack.

The element is checked to ensure that only a program reference

or one of the following appears as a substatement:

108

EXIT

PAUSE

INPUT

TYPE

PUNCH

TAB

TYPEOUT

GO TO

A relational operation
A THEN or ELSE clause
Assignment.

A parameter is valid if the last element is not one of the opera-

tions listed above.

4,5.2 Program CDR

Program CDR, shown in Figure 4-10, generates interpreter
instructions from the post-fix Polish stack. The stack is input as a
string in state 4 of the statement conversion area {1.2-1.1}. The pro-
gram CDR processes the string from left to right, generating the instruc-
tions for each operation as it appears. The generated instructions are
entered in order into the interpreter instructions area {1.1.5}, beginning
at the location specified by the value of the last previous instruction
pointer {13.}. Based on this pointer and on the number of instructions
generated, the program sets the last instruction pointer {6.} before
exiting, Also, the program places column 2 of the current entry in the
statement index table {1.2-1,3} in form 2. The current entry is speci-

fied by the value of the statement count {18.}.

The input string consists of numbers in the range 99 through 494
which have the following designations:

99: end of statement

101 - 110 : program references

201 - 273 : operators and delimiters

301 - 355, 386 - 399 : constant references
400 - 430 : wvariable references

450 - 494 : statement references.

The input string can contain the codes listed in Table 4-4 for operators

and delimiters (except for SAVE and DELETE) and the codes listed below

for special delimiters.

109

110

CLASSIFY FIRST
ELEMENT IN
STACK

CLASSIFY MEXT

ELEMENT IN STACK

LOCATE BEGINNING OF PARAMETER STRING

FOR CONSTANT REFERENCES IN PROGRAM
PARAMETER STRING, GENERATE LOAD AND
STORE TO TEMPORARY

GENERATE REQUIRED INSTRUCTION AND
PARAMETER STRING

AS REQUIRED GENERATE STORE TO TEMPORARY
AND PLACE TEMPORARY IN STACK

GENERATE TYPEOUT

INSTRUCTION, TRANSFERRING
WORD COUNT AND MESSAGE

LOAD
INSTRUCTION
REQUIRED?

STORE TO TEMPORARY
PLACE TEMPORARY IN STACK

COLLAPSE
STACK AS
REQUIRED
GENERATE :
LOAD THSTRUCTION WITH
SUBSCRIPTING W—

GENERATE FUNCTION
INSTRUCTION WITH ACCUMULATOR
AS OPERAND I POSSIBLE

FOR INPUT, TRANSFER VARIABLE
NAME

AS REQUIRED, GENERATE STORE T0
TEMPORARY AND PLACE TEMPORARY
IN STACK

END
REPEAT?

GERERATE INSTRUCTIONS:
LOAD REPEAT COUNTER

BRANCH TO THIRD
INSTRUCTION GENERATED

GENERATE

RANCH
INSTRUCTION

GENERATE
RELATIONAL

BRANCH
INSTRUCTION

COMPLETE PREVIOUS
RELATIONAL OR
- BRANCH INSTRUCTION

GENERATE BRANCH
INSTRUCT EON

IF REQUIRED, GENERATE LOAD INSTRUCTION FOR
FIRST ARGUMENT

GENERATE BINARY OPERATOR INSTRUCTION WITH
SECOND ARGUMENT

GENERATE STORE TO TEMPORARY
PLACE TEMPORARY IN STACK

IF REQUIRED, GENERATE LOAD INSTRUCTION

GENERATE STORE INSTRUCTION WITH SyB-
SCRIPTING IF SPECIFIED

IF POSSIBLE.

GENERATE FREE
TEMPORARY
INSTRUCTION

AS REQUIRED, COMPLETE BRANCH INSTRUCTIONS

IF POSSIBLE, GENERATE FREE TEMPORARY INSTRUCTION
PACK INSTRUCTIONS AND PLACE IN INSTRUCTION AREA
SET INSTRUCTION POINTERS

FIGURE 4-10.

PROGRAM CDR

Code

270
271
272
273

Delimiter

right subscript

left subscript

right parameter string
left parameter string

The elements of the input string may be grouped into classes which

reflect the functions required to generate the equivalent interpreter instruc-

tions. The twelve classes are listed below.

Class

1

10
11

12

Elements

Constant references, variable references, left and
right parameter string delimiters, and the left sub-
script delimiter ‘

The operations which have parameter strings enclosed
in delimiters:

Program references
TYPE

TAB

PUNCH

ARRAY

SHIFT

The operator TYPEOUT

Right subscript delimiter (code 270)

The following operators which have only one operand or
are preceded by a dummy operand: EXIT, PAUSE, INPUT,
MIN, MAX, INTERVALS, SUMF, LN, ATAN, ABS, TANH,
SUM, MAGNITUDE, SIN, COS, EXP, SQRT, and negation
The operator GO TO

The relational operators

THEN and ELSE

Binary arithmetic operators

Equal

Comma

End of statement

111

The program CDR moves along the string, generating the instruc-
tions required to perform each operation and to store any results. The
result replaces the operation and operands in the stack. For an opera-
tion which does not generate a result, the operation and associated operands
are removed from the stack. This process continues until the stack is

completely processed.

The format for all interpreter instructions is described in Table
2-4. Constant, program, and variable references are input to program
CDR in the final form required for the instructions. However, operations
are in the range 201 through 263, Before the instructions are finalized,
200 is subtracted from the operation codes. The delimiters do not appear

in instructions,

In addition to generating the instructions which correspond directly
to the operations in the input string, program CDR generates load and
store interpreter instructions and assigns temporary variables. The
internal codes which refer to temporary variables are variable reference
numbers in the range 431 through 450, They are assigned in order, begin-
ning with 431, and reassigned for reuse as soon as possible. To perform
this assignment, program CDR maintains a temporary count which will
be referred to in the discussions on the various input element classes.,

The count is initialized to 430 and is incremented by one before each
assignment. The count is decremented as a temporary becomes available

for further use; however, the count is not allowed to drop below 430.

4.5,2.1 Class 1 - The constant and variable references and
delimiters comprising this class are not processed until the associated

operand occurs.

4,5.2.2 Class 2 - To process an operation which is preceded by
a parameter string, the input stack is searched backwards from the opera-

tion until the left parameter string delimiter is located. If the operation

112

is a program reference, for each element in the string which is a constant
reference, the program generates a load and a store instruction (see
Table 2-4) with the constant reference and a temporary variable for the
respective operands. The constant reference in the parameter string

is replaced with the temporary variable reference. When the left param-
eter string delimiter is located, the program generates the appropriate
instructions, which are described in Table 2-4. The parameters are
placed in subsequent words in the order in which they occur in the string
from left to right. As each temporary variable reference is transferred,

the temporary count is decremented.

When the parameter transfer is completed and either a TYPE,
TAB, or PUNCH is being processed, the operator and its parameter or
parameters are removed from the stack: the stack is compressed
removing the elements, beginning with the left parameter string delimiter

and ending inclusively with the operator,

For the operators ARRAY and SHIFT and a program call, a store
to temporary instruction is generated after the last parameter word. The
temporary reference replaces the operation or program reference, asso-

ciated parameters, and the two parameter string delimiters in the stack.

4.5.2.3 Class 3 - The operator TYPEOUT is followed in the stack
by the word count which specifies the number of subsequent words in the
stack occupied by the message to be output. The TYPEOUT instruction
is generated, leaving the message words in order. The stack is com-

pressed, removing the operator, word count, and message.

4,5,2.4 Class 4 - For a right subscript delimiter, program
CDR determines whether a variable is being subscripted to the left of an
equal sign. If the delimiter is not beyond the fifth entry in the stack and
if the second entry is a left subscript delimiter, the variable is to the

left of an equal sign. In this case, the delimiter is not processed.

113

Otherwise, program CDR generates a load instruction for the variable
whose reference number immediately precedes the left subscript delimiter.
The subscript or two subscripts are transferred to the subsequent instruc-
tion word or words. For each subscript which is a temporary reference,
the temporary count is decremented., The program then generates a store
to temporary instruction and this temporary reference replaces the vari-

able reference and parameter string with delimiters in the stack,

4.5.2.5 Class 5 - To process the functions which have a single
operand, program CDR checks the last instruction generated. If the
instruction is a store and the store operand is the same as the function
operand but is not a temporary reference, the instruction for the function
is generated with the system accumulator as the operand. If the matched
operand is a temporary reference, the store to temporary instruction is
deleted before the instruction using the system accumulator is generated.
In all other cases, the operand preceding the function in the stack is used

to generate the instruction.

For the PAUSE and EXIT instructions, the operator and dummy
operand are removed from the stack. For the operator INPUT, the
program locates the variable name in the variable table {1.2-1.5} and
transfers the name to the three words following the INPUT instruction.

The operator and variable reference are then removed from the stack.

For the remaining operators of class 5, a store to temporary
instruction is generated after the function instruction. The temporary

reference replaces the operator and operand in the stack.

4,5.,2.6 Class 6 - In the stack, the GO TO operator is immediately
preceded by a statement reference. The reference is 449 plus the number
of the row in the statement index table {1.2-1,3} which contains the stor-
age information for the statement to which a branch is made. If the row

number is less than or equal to the statement count {18.}, program CDR

114

determines the beginning location in the interpreter instructions area
{1.1.5} of the statement. This information is obtained from column 2
which is in form 2. From this location, the displacement for the GO TO
instruction is calculated and the instruction is generated. If the row
number is greater than the statement count {18.} (this is acceptable
only in the SUPPRESS and EDIT modes), the GO TO instruction is

generated using the statement reference as a temporary operand.

The GO TO operator may be preceded in the input string by the
dummy statement number 355, The code signals the end of a REPEAT
statement (see Section 4.4.3.5). Program CDR generates a load instrﬁc-
tion with the repeat counter (code 430) as the operand. The program
then fills in any incomplete branches required for IF tests (see Section
4,5, 2. 8), making them branch to this load instruction. A GO TO is
then generated to branch to the third word of the instruction sequence

generated for the current statement.

After a branch instruction has been generated, the GO TO operator

and the single operand are deleted from the stack.

4.5.2.7 Class 7 - For a relational operator, the corresponding
instruction is generated without an operand. The operand is filled in
when the delimiter THEN occurs in the stack. The relational operator

and the preceding code are removed from the stack.

4,5.2.8 Class 8 - The THEN and ELSE are used in the stack as
delimiters for THEN and ELSE clauses, respectively. They appear at
the end of the clauses. When a THEN occurs, a branch instruction is
generated with a null operand, to be changed when an ELSE occurs. The
last relational instruction (see Section 4.5.2.7) is filled in with an operand
based on the displacement from the relational instruction to the next

instruction after the added branch.

115

When an ELSE occurs, a nonoperative branch instruction is
generated. The branch is nonoperative in that the displacement used in
the operand is zero. The last branch generated for a THEN is altered
to cause a branch to the nonoperative instruction. After the instruction
generation and modification have been completed, the THEN or ELSE is

removed from the stack.

4.5.2.9 Class 9 - In processing a binary operator, program CDR
examines the last instruction to determine whether or not a load instruc-
tion is required for the first operand. If the last instruction is a store,
the operand is compared with the first operand of the binary operator.
(The first operand is the leftmost of the two operands preceding the binary
operator in the stack.) If the operands are the same, the load is not
required; and, if the operand is a temporary reference, the store instruc-
tion is deleted. In all other cases, a load instruction is generated to load
the first operand. If the argument is a temporary reference, the load
becomes a load/free instruction. The instruction is generated for the
binary operator, with the second argument as the operand. If either of
the two operands is a temporary reference, the temporary count is decre-
mented. A store to temporary instruction is generated. The temporary

reference replaces the binary operator and two operands in the stack.

4.5.2,10 Class 10 - To process the equal, program CDR gener-
ates a load instruction for the operand immediately preceding the equal
unless the last instruction generated is a store for the same operand.
If this previously generated store is a store to temporary, the instruction

is deleted.

The store instruction is generated which may or may not require
subscripting. If subscripting is required, the subscript or subscripts
will be enclosed in subscript delimiters (see Section 4.5.1) and will

separate the two operands in the stack with which the equal is associated.

116

- The store instruction operand is the first in the stack (the one farthest
away from the equal). The two operands, the subscript string, if present,

and the equal are removed from the stack.

4.5.2.11 Class 11 - The comma separates substatements in the
stack and is used to free temporary variables, When a comma occurs,
all instructions generated since either the last occurrence of a comma or
the beginning of the statement are searched for temporary references.
For each reference found, column 4 of the corresponding row (referenc-
ing is identical to variable referencing) in the variable table {1.2-1.5}
is set to one. If any temporary variable references occur in the sequence
of instructions, program CDR generates a free temporary instruction.
The instruction has the first temporary (code 431) as its single argument,
if only this temporary was allocated. Otherwise, the instruction has two
operands. The first argument is the highest temporary reference number
occurring in the instruction sequence. The second operand is always 431.

The comma and anything preceding it are removed from the stack.

4,5,2.12 Class 12 - On the end of statement, any branches which
have not been completed (see Section 4.5.2.8) are made to branch to the
next instruction to be generated, A free temporary instruction is gener-
ated, if required (as explained for the class 11 element). An exit is then

made from program CDR.

4.6 SUBSYSTEM 4

4.6.1 Data Referencing System

Most of the interpreter operators (see Table 2-4) may have operands
which are constant or variable references or a reference to the system
accumulator. Since different routines execute these operators, the

mechanism for locating data will be discussed in this section.

117

A constant reference is a 300 number. If the number is in the
range 301 to 354, it refers to a user constant stored in the constant area
of the user program being executed (see Figure 2-1). The rightmost two
digits of the constant reference specify which constant. The execution
routines use the second word of the program header to locate the first
constant and calculate the subscript in a floating point array equivalenced
to KODE at which the referenced constant is stored. If the constant refer-
ence number is in the range 386 to 399, the constant is a system constant
{1.3.2}. The execution routines calculate the subscript to access the

referenced constant in floating point.

A variable reference is a 400 number. The rightmost two digits
specify which link in the variable linkage area of the program (see Figure
2-1) corresponds to the variable. The first link is referenced by 401,
the second by 402, etc. The execution routines use the first word of the
program header to locate the first variable link. The link specified by
the variable reference contains a number ranging from zero to 89, If
the number is zero, the variable is currently ﬁndefined (no data has been
assigned to the variable). If the number is positive, the variable is
defined and the storage information for the variable is in the row of the
data table {2.} specified by the number. The storage information con-
sists of the number of floating point words comprising the data and the
subscript of the first floating point number. The subscript is the number
used when accessing the data using a floating point array equivalenced

-to the integer array KODE, Data is accessed using the floating point
array only for arithmetic computation. Throughout the system floating
point numbers are moved as two-word integers. The variable referencing

mechanism is shown in Figure 4-11.

The system accumulator is referenced by a zero operand. The
location and length of the system accumulator is contained in row 90 of
the data table {2.}. The row contains zeros if storage is not currently

allocated for the system accumulator.

118

W3L1SAS ONIONFYI4FY I19VINVA "LLl-v J¥N9Id

(1SL1)300% NOILVI01

L

¢ (QuoM vlva L QYOM Vliva

Y3I¥Y Yiva ¥3sn

N

94§

HIIN3T NOILVIO1
378vl vivd

06

: P

b ¥
m,4,,,/:,/r,,/l,,| A

Z Z

L Moy L NI

VIV IOVANIT 378VIHVA

[€ ~——— JONIYIATY

JTaVIYVYA

€0y X

NOILONYLSNI
LNIYAND

ONY43d0 Y0LVY¥3do
SNOT LINYLSNI

119

4,6,2 Storage Allocation

Within this subsystem, the programs RTN, STV, LSG, and TRG
request changes in storage allocation either to obtain new storage or to
release storage for further use. Whenever storage allocation is performed,
the following are updated by the programs in subsystem 4:

® Data table entry count {10.}

o Entries in the data table {2.} affected by the change.

(The storage allocation subprograms update the data storage count {12.}.)
The updating of the data storage information by the programs in sub-

system 4 will not be repeated in the individual program descriptions.

4.6.3 Program GETOP

The Assembler language program GETOP, shown in Figure 4-12,
unpacks the interpreter instruction specified by the current location {4. }.
The instruction is separated into the operator code {3.1-2} and the operand
code {3.2-2} which are, respectively, in the leftmost seven bits and the
remaining nine bits of the word. The operator class {5.} and subclass
{3.7-2} are set. Where no subclass is specified for the operator, the
subclass is set to zero, The operators, classes, and subclasses are
listed in the description of subsystem 4 (see Section 3.4) and the operator

codes are presented in Table 2-4.

4.6.4 Program RTN

The tasks of program RTN are to return control from a called
user program to the calling program and to output system error messages.
The execution of these tasks is controlled by the type of entry to RTN
{3.7-3} which indicates the following:

1 - return from user program: execute interpreter instruction
exit

2 - return from all called user programs to conversational mode
program and output error message

3 - output error message.

120

<::" ET;&Y ‘::>

UNPACK INTERPRETER
INSTRUCTION

SET CLASS AND SUBCLASS

b
@«

FIGURE 4-12, PROGRAM GETOP

121

The three entry types are described in the order in which they appear in
Figure 4-13. For all entries, the program initially sets the output
parameter to one. The possible values and meanings for the parameter

are

1 - continue execution of interpreter instructions

2 - route system flow to subsystem 2 for reentry of source
statement

3 - route system flow to subsystem 1 for normal program and
data initialization.

4.6.4.1 Entry Type 3 - Program RTN reads that column of the

~error message control table {22.5} specified by the error indicator {9.}
to obtain the record number at which the error message begins and the
number of records on the system control file {22.} occupied by the error
message. The message is then read and output on the typewriter. The
error messages are listed in Appendix A. (Error message number 29 is
output directly by program RTN.) If the error is number 54, indicating
the maximum number of program statements have been entered, the
statement entry mode {16.} is checked. If the system is in the execute
r le, the previous variable count {1.1.3} is set to zero and the output
parameter is set to three. If the system is in the SUPPRESS or EDIT
mode, the previous mode program construction information (see Section

4.3.1.2) is restored from the system working file (either {20.4} or {20.5).

If the card status {1.1.4} is two, indicating an error was
detected during the translation of a program entered on cards, the
statement number is output. The number is obtained from the row
in the statement index table {1.2-1, 3} indicated by the statement count
{18.}. The conversational mode program construction information is
then restored from the system working file {20.5}. For all errors, if
the statement count is one, the output parameter is set to three; other-
wise, the parameter is set to two. It should be noted that the error

indicator {9.} is not cleared by program RTN,

122

‘ ENTRY ’

SET OUTPUT
PARAMETER
TO ONE
NO
SAVE ERROR
NUMBER YES
CLEAR ERROR)
INDICATNR
NO

YES

FREE PROGRAM DATA STORAGE EXCEPT
PARAMETERS

CLEAR VARIABLE | INKAGE AREA
RESET DATA ENTRY COUNT

REVERSE STATUS OF PROGRAM IN ACTIVE
TABLE

LOCATE CALLING PROGRAM AND RETURN
LOCATION

CLEAR CALLED PROGRAM HEADER
IF REQUIRED, DEFINE ACCUMULATOR

SET CURRENT PROGRAM AND LOCATION TOQ
CALLING PROGRAM

READ ERROR MESSAGE
FROM FILE

CONTRO!
QUTPUT MESSAGE ON ook
TYPEWRITER

SYSTEM

IF ERROR NUMBER 54:

RESTORE PREVIOUS MODE AS
REQUIRED

SET PREVIOUS VARIABLE COUNT
IF REQUIRED

SET OUTPUT PARAMETER

IF CARD INPUT, OUTPUT CURRENT
STATEMENT NUMBER AND RESTORE
CONVERSATIONAL MODE PROGRAM

EXIT

SUBPROGRAM AdS

FREE
SPECIFIED
STORAGE

IN
PROGRAM
CONSTRUCTION
AREA?

FIGURE 4-13.

PROGRAM RTN

SYSTEM
WORKING
FILE

123

4.6.4.2 Entry Type 2 - Program RTN saves the error number

and clears the error indicator. The functions described for entry type 1
are performed until the system has returned execution through all the
called user programs to the conversational mode program in the pro-
gram construction area {1, 1} (until the current program pointer {8. }
is one). The error indicator is then restored and all the actions des-

cribed for entry type 3 are taken.

4.6.4.3 Entry Type 1 - When executing an exit interpreter

instruction, program RTN releases all storage in the user data area
{1. 3.1} which is local to the user program: all storage for temporary
variables and variables in the program which are not parameters is
released. The data table entry count {10. } is adjusted accordingly.
The program variable linkage area is set to all zeros so that the pro-
gram can be reexecuted without reading a fresh copy from the program
file. The program entry in the active table {1.2-2,1} is changed to
indicate the program is no longer in the execution chain, This is done
by making the entry in column 2 negative, The fourth word in the user
program contains the program active number which is the row in the
active table containing the entry for the program. (See Figure 2=1 for
the program structure.) The fifth word of the header contains the
active number for the calling program. Using this pointer to the
active table, the current location of the calling program is found.

'The fourth word of the called program header contains the location
relative to the calling program header at which execution is continued.
The current program location {8, } is set to the location of the calling
program and the current location {4-1} is set to the current program
location plus the relative location for the return. The fourth and fifth
words of the called program are set to zero. If the accumulator is

not currently assigned, it is set to length one,

124

4,6,5 Program JMP

Program JMP executes the call to a user program. The func- ‘
tions of JMP, shown in Figure 4-14, can be grouped into the eight tasks
described below. Unless otherwise stated, the tasks are executed in

order,

4.6.5.1 Task 1 - If Overlay I {1.2-1} is in core, the overlay,
except for the statement conversion area {1.2-1.1}, is saved on the
system working file {20.6}. If the active program count {19.} is zero,
Overlay II {1.2-2} is then initialized in core by setting KODE (451) to
one, the active table {1,2-2, 1} to all zeros, and the active area pointer
{1.2-2. 2} to 503. However, when the active program count is positive,
Overlay II is restored from the system working file {20.7}. The over-

lay status {3.8} is set to two.

4.6.5.2 Task 2 - The first operand for a call instruction is a
program reference number, It is 100 plus the column in the program
call table which contains the name of the program to be called. Using
the third word of the header (see Figure 2-1), the program name and
the previous active number are located in the program call table of the
calling program., If the previous active number is positive, indicating
the program has been called previously, the program name is checked
with the indicated entry in the active table {1.2-2.1}. If the names

agree, the active number is current and task 8 is executed.

4.6.5.3 Task 3 - This task is performed only if there are
programs in the active table. The active table is searched to find a
match to the name of the program being requested. If the name appears

in the active table, task 7 is performed next.

4,6.5.4 Task 4 - This task is performed only if the user
program requested has not been found in the active table by tasks 2 or
3. The program control table is read from the user program file

{21. 4} and searched to locate the requested program. The record

125

<:j ENTRY j:>
|

SAVE OVERLAY I IF IN
CORE
SET OVERLAY STATUS

SYSTEM
WORKING

FILE

ANY

PROGRAMS

IN ACTIVE,
‘AREA?

READ OVERLAY II,
IF REQUIRED

SEARCH ACTIVE TABLE
FOR PROGRAM

INITIALIZE OVERLAY II

:

READ USER PROGRAM TABLE FROM FILE AND
LOCATE PROGRAM IN TABLE

IF ACTIVE TABLE OR ACTIVE AREA IS FULL,
REMOVE INACTIVE PROGRAMS, AND PACK
PROGRAMS IN EXECUTION AREA, ADJUSTING
TABLE ENTRIES AND POINTER TO NEXT
AVAILABLE LOCATION

ENTER PROGRAM IN FIRST AVAILABLE ROW
OF THE ACTIVE TABLE

NO
" _PROGRAM
IN TABLE?
YES
USER
PROGRAM
FILE

v

CHECK NUMBER OF PARAMETERS

PASS PARAMETERS, ASSIGNING ROWS IN
DATA TABLE AS REQUIRED

INCREMENT NUMBER OF ACTIVE PROGRAMS | SET RETURN INFORMATION

READ PROGRAM FROM FILE AND SET ACTIVE
NUMBER IN PROGRAM

MARK NEW PROGRAM ACTIVE
SET POINTERS TO NEW PROGRAM

1
i)

FIGURE 4-14. PROGRAM JMP

126

location and the length of the internal form of the program are obtained,
respectively, from the fourth and fifth columns of the table. If the
active table is full (contains ten entries) or if the program will not fit

in core, task 5 is executed. The program will not fit in core if its
length plus the active area pointer {1.2-2.2} is greater than 1, 140 which
is the beginning subscript of the data area {1.3}. If the program can be

brought into core, task 6 is executed.

4.6.5,5 Task 5 - In this task, programs in the active area are
packed to provide space for additional programs. The following actions

are taken:

® Delete all inactive programs from the active table by setting
the entry row to zero. A program is inactive (not in the
current execution chain) if column 2 is negative,

® For each entry deleted, decrement the active program count

{19.}

® Set the active area pointer {1.2-2,2} to 503

@ Move all programs remaining in the execution area to the
beginning of the area, removing unused words between them
and updating the active area pointer and column 1 of the active
table for each program moved.

4,6.5.6 Task 6 - The program located on the user program

file by task 4 is assigned the active number corresponding to the first
unused row in the active table {1.2+2.1}. The program name is copied
from the program call table into the third through fifth columns of the
assigned row, column 1 is set to the current value of the active area
pointer {1.2-2.2}, and column 2 is set to minus the length of the program.
The program is read from the user program file into the program execu-
tion area {1.2-2.3} at the place specified by the active area pointer.

This pointer is then incremented to the first word beyond the program.

The assigned active number is entered into the fifth word of the program

header (see Figure 2-1).

127

4.6.5.7 Task 7 - The active number for the called program is
entered into the program call table of the calling program (see Section

4.6.5.2).

4.6.5.8 Task 8 - This task passes parameters between the
user programs. If parameters were entered in the user program call
statement, they appear as variable references (one per word) in the
words following the call instruction. The number of parameters
appearing is validated by the number specified in the fourth word of
the called program header. For each variable in the parameter list
which has a zero value in the linkage area, the next available row in
the data table {2.} is assigned for future storage, the link is filled
with the row number, and the data table entry count {10.} is incre-
mented. Parameters are passed in order and to the first variables
(those with lowest variable reference numbers beginning with 401) in
the called program. For each variable in the parameter list, the corre-
sponding link from the variable linkage area in the calling program is
set in the next variable link in the called program. After the param-
eter links have been copied, the information required to return to the
calling program is set in the following words of the called program

header:

Word 6 - active number for calling program, obtained from
word 5 of the calling program header except for the
conversational mode program which has active
number zero

Word 7 - set to the location relative to the program location
(the first word of the calling program header) of
the last parameter in the calling sequence.
The entry for the called program is marked active, the current pro-
gram pointer {8.} is set to point to the header of the called program,
and the current location {4-1} is set to the value of the current program

pointer plus six,

128

4,6.6 Program STV

Program STV, flowcharted in Figure 4-15, executes the inter-
preter instruction INPUT (see Table 2-4). The first task performed by
STV is to request entry of the data. The name of the variable to be
defined is in the three words following the INPUT instruction and is
packed two AMTRAN coded characters per word. The program STV
reads the EBCDIC table from the system control file {22.4}, converts
the variable name to EBCDIC, and outputs the variable name of the
typewriter preceded by the word ENTER. The data storage currently
assigned to the variable is located through the variable link to the data
table {2.} (see Section 4.6.1). If a link does not exist, the next avail-
able row in the data table is assigned to the variable, the data table

entry count {10.} is incremented, and the link is filled in.

Program STV uses a modified form of the AMTRAN character
codes. Table 4-6 contains the codes used by STV, The input to STV
can be on cards or from the console typewriter. Sense switch 15
controls the device selection:

Switch 15 OFF (down) - typewriter input
Switch 15 ON (up) -~ card input.

If the input is on cards, program STV reads an array from the system
working file {22.3} containing the EBCDIC codes for the characters
STV recognizes. Card input is processed one card at a time. The
characters are converted from EBCDIC to the codes in Table 4-6 and

the code string is scanned.

If the input is from the typewriter, the entire statement is read
by the subprogram KYBRD. The output from this routine is in AMTRAN
character codes which STV then converts to the codes in Table 4-6 before

scanning the entire statement.

129

<::f ENI?Y "j:>(

READ EBCDIC TABLE FROM FILE
LOCATE VARIABLE STORAGE
IF UNASSIGNED, ASSIGN

OUTPUT "ENTER" AND VARIABLE
NAME

INPUT
ON CARDS?

SUBPROGRAM

READ INPUT STATEMENT

CONVERT TO AMTRAN
CHARACTER CODES

|

CONVERT FROM
AMTRAN TO
SPECIAL CODES

SUBPROGRAM AJS

ADJUST
STORAGE FOR
VARIABLE TO
DESIGNATED

LENGTH

130

SYSTEM
CONTROL
FILE

READ EBCDIC TABLE ‘
FOR CHARACTER SUBSET

READ CARDS

CONVERT FROM EBCDIC
CODES TO SPECIAL CODES

TERMINAL
INPUT ?

SUBPROGRAM AJS

ADJUST DATA ELEMENT
TO DESIGNATED LENGTH

T

SET CURRENT LOCATION

SET VARIABLE AND
ACCUMULATOR TO LENGTH
I ONE

v
=D

ASSIGN ALL POSSIBLE STORAGE TO VARIABLE

SCAN CODE STRING, VERIFYING AND CONVERTING
NUMBERS TO FLOATING POINT

STORE NUMBERS IN DATA AREA
AT END OF ENTRY, FREE UNUSED STORAGE

FIGURE 4-15.

|

oD

PROGRAM

STY

TABLE 4-6. CHARACTERS AND CORRESPONDING CODES
USED BY PROGRAM STV

Character Code

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9
Blank 10
- 11
12

13

m
—
(&2 I =1

131

The input to STV is a sequence of numeric constants separated
by commas or blanks. STV also accepts floating point entries in which

the exponent is in one of the forms

where d represents a digit. The task of STV is to scan the string of

character codes and convert the numbers to floating point.

When the first number has been converted to floating point, all
available storage, as indicated by the current length of the variable and
the data storage count {12.}, is allocated to the variable. The converted
number is stored as the first element of the variable. As each subsequent
number is converted to floating point, it is stored in the area allocated

for the variable as the next data element.

If an error is detected while STV is processing a card input, the
program deletes those numbers already stored which appeared on the
current card and requests reentry of the card. If an error is detected
when reading from the typewriter, the last number accepted by STV

and a request for reentry of the remaining numbers are output.

The termination of input is indicated by an eof on the typewriter
and by a double slash (//) on cards. When the termination characters
are recognized, any storage not used for the variable is returned to
available storage and the entry in the data table {2.} for the variable

is set to the correct length.

When numbers are not input prior to the termination characters,
the user is terminating an input loop. If storage has been allocated for
the variable, it is reduced to length one. The accumulator is set to
length one. If the pointer to the last interpreter branch instruction {17.}
is set, the current location {4-1} is set to its value; otherwise, the current

location is not changed.

132

4,6, 7 Program WRT

Program WRT, shown in Figure 4-16, executes the class 4
interpreter instructions: TYPEOUT, TYPE, and PUNCH (see Table
2-4 for the operator codes). Program WRT is provided the operator
code {3.1-2}, the code for the first operand {3.2-2}, and the current

location {4~1} of the interpreter instruction to be executed.

For each of the class 4 operators, the user selects the output

device using sense switch 0:

Switch 0 OFF (down) - typewriter output

Switch 0 ON (up) - printer output.
For TYPE and PUNCH, the user selects the output format using sense
switch 1:

Switch 1 OFF (down) - fixed point format

Switch 1 ON (up) - floating point format.

The operand {3,2-2} for TYPEOUT is the number of words
immediately following the TYPEOUT instruction which contain the
message to be output. The message consists of characters in AMTRAN
character codes which are packed two characters per word (each
character occupies eight bits). Program WRT does the following tasks

to execute the TYPEOUT operator:

® Read F:BCDIC table from the system control file {22. 4}
® For each word specified by the word count (the operand {3,2-2})

A Unpack characters

A Place equivalent EBCDIC codes in an output array

A If a carriage return is encountered, output the array
A On the last character, output the array

® Set the current location {4-1} to the last word containing

characters in the message: set to the current location
upon entry to WRT plus the operand {3.2-2}.

133

READ EBCDIC TABLE FROM FILE
UNPACK CHARACTERS
CONVERT CHARACTERS FROM AMTRAN

TYPEOUT TO EBCDIC CODES SYSTEM
OPERATOR? WORKING
OUTPUT MESSAGE ON SELECTED FILE
DEVICE
NO SET CURRENT LOCATION TO LAST

WORD IN INSTRUCTION
C EXIT)

B
FOR EACH OPERAND :
LOCATE DATA

OUTPUT ON SELECTED DEVICE OR DEVICES
IN THE SELECTED FORMAT, ROUNDING IN
THE 5TH DECIMAL PLACE IF FORMAT IS
FIXED POINT

SET CURRENT LOCATION TO WORD CONTAINING
LAST OPERAND

|
Co

FIGURE 4-16. PROGRAM WRT

134

The TYPE and PUNCH instructions can have multiple operands
which can be either constant or variable references. When only one
operand is specified, it may refer to the system accumulator. For
each operand, the associated data is located (see Section 4.6.1). The
data is then output on the selected device in the selected format. If the
operator is PUNCH, the data is output on cards as well as on the printer
or typewriter., If the format is floating point, the numbers are first
rounded by adding 0. 00005 to each. The fixed point output contains
four significant digits to the right of the decimal point and up to seven
digits preceding the decimal point. For TYPE, eight numbers are
output per line; for PUNCH, six numbers are punched per card and
output per line., Six significant figures are output in the floating point
format with seven numbers per line or card. Before exiting from
program WRT, the current location {4-1} is set to the word containing

the last operand for a TYPE or PUNCH operation.

The user can suppress or terminate the execution of any of the

three operations by sense switch 13:

Switch 13 OFF (down) - normal execution
Switch 13 ON (up) - terminate execution.

Program WRT checks the status of sense switch 13 and terminates
execution if required. The current location {4-1} is always set as if

normal execution had been completed.

4,6.8 Program LSG

Program LSG executes the class 5 interpreter instructions

which are grouped into the following subclasses:

load accumulator, load accumulator and free temporary
SIN, COS, EXP, SQRT, negation

-+, *s /s = &

- GO TO, LT, GT, EQ, NE, GE, LE

5 - store accumulator

6 - free temporary,

B W N

135

The program is provided the subclass {3.7-2}, operator {3,1-2}, first
operand {3.2-2}, and current location {4-1}., LSG sets an output param-

eter to one of the following:
1 - continue normal execution

2 - route system flow to subsystem 1 for normal program and
data initialization

3 - continue normal execution without clearing the branch
pointer {17, } before executing the next interpreter
instruction

4 - an error has been detected, output error message.

Before any operators are executed, the output parameter is initialized
to one, For each operator, the operand is validated using the operand
requirements listed in Table 2-4. For all operators except the store,
data must be currently assigned to the operand. The functions of LSG,

shown in Figure 4-17, are described by subclass.,

4,6.8.1 Subclass 1 - For both of the operators in this subclass,
the storage information for the operand is located in the data table {2.}
(see Section 4, 6,1). For the load accumulator and free temporary
instruction, the accumulator is adjusted to length zero and the entries

in the data table {2.} for the accumulator and the temporary variable

are exchanged: the contents of the respective rows are exchanged.

The load accumulator instruction may have one or two additional
operands which appear in the one word or two words immediately follow=-
ing the load instruction. If there are multiple operands, the actual
value(s) of the operand(s) are obtained and the current location {4-1} is
incremented to the word containing the last operand. Each additional
operand specifies a subscript in the variable to be loaded (the first
operand). If two subscripts appear, they specify a range of subscripts.

The subscript or subscripts are checked to make sure they are in the

136

ENTRY

SET OUTPUT
PARAMETER
T0 ONE

CLASSIFY AND

LOCATE QPERAND
DATA

VALIDATE OPERAND

LOAD AKD
FREE_TEMPORARY
INSTRUCTION

FREE
TEMPORARY
INSTRUCTION?,

SUBCLASS
42

1F BRANCH 1S YO
BE TAKEN, SET
CURRENT LOCATION

IF SYSTEM IS T0 BE RESET, SET
PREVIOUS VARIABLE COUNT AND
SET QUTPUT PARAMETER TO THREE

OTHERWISE, SET QUTPUT PARAMETER
TO TWO, SET CURRENT LOCATION AND
BRANCH LOCATION

REE

ACCUMULATOR
STORAGE IF
ALLOCATED

AJS SUBPROGRAM SHF

EXCHANGE DATA
TABLE ENTRIES
FOR ACCUMULATOR
AND TEMPORARY

VARIABLE

CHECK DIMENSION COMPATABILITY
ADJUST ACCUMULATOR LENGTH IF
NECESSARY

PERFORM OPERATION ON DATA AND
ACCUMULATOR, PLACING RESULTS IN
ACCUMULATOR

IF OPERAND 1S NOT THE ACCUMULATOR,

ADJUST ACCUMULATOR TO LENGTH OF
OPERAND

PERFORM QPERATION ON DATA, PLACING

RESULTS IN ACCUMULATOR

SUBPROGRAM AJS

ADJUST
ACCUMULATOR
T0 SPECIFIED

LENGTH

SUBPROGRAM AJS
ADJUST
ACCUMULATOR
T0 SPECIFIED
LENGTH

SUBPROGRAM AJS

IF MULTIPLE OPERANDS, SAVE FIRST OPERAND

AND OBTAIN SECOND OPERAND

BEGINNING WITH SECOND QPERAND, LF PRESENT]

AND ENDING WITH FIRST OPERAND, FREE UP

ALL STORAGE ASSXGMED T0 VARIABLES IN
FLED

RANGE SPECI

FREE
SPECIFIED
STORAGE

1F MULTIPLE OPERANDS:
‘SAVE LOCATION OF VARIABLE
DATA

OBTAIN ACTUAL DATA VALUES
FOR ADDITINNAL NPERANDS

LOAD
ACCUMULATOR
INSTRUCTION

EXCHANGE
DATA TABLE
ENTRIES

CHANGE
STORAGE

ALLOCATION
AS SPECIFIED

MOVE A
SPECIFIED ALLOCATE TEMPORARY STORAGE OF LENGTH
DATA OF LAST {OR ONLY) SUBSCRIPT PLUS ONE
1F VARTABLE CURRENTLY OEFINED, TRAMSFER
DATA FROM VARIABLE TO TEMPORARY AND FREE
VARIABLE STORAGE
TRANSFER TEMPORARY STORAGE INFORMATION
TO DATA TABLE ENTRY FOR VARIABLE

TRANSFER DATA FROM ACCUMULATOR TO
SPECIFIED ELEMENT{S) IN VARIABLE

IF VARIABLE CURRENTLV UNDEFINED, ASSIGN ENTRY
IN DATA
IF NOT SUBSCRIPTED:
1F ACCUMULATOR DATA IS NOT NEEDED IN NEXT
INSTRUCTION, EXCHANGE DATA TABLE ENTRIES
FOR ACCUMULATOR AND VARIABLE
OTHERWISE, ADJUST VARIABLE TO LENGTH of
OR AND TRANSFER DATA F
ACCUMULATOR TG VARIABLE
IF SUBSCRIPTED INSIDE CURRENT LENGTH OF
VARIABLE, TRANSFER DATA FROM ACCUMULATOR
TO VARIABLE
IF SUBSCRIPTED BEYOND CURRENT LENGTH OF
ARIABLE:

ACCUMULAT

FIGURE 4-17.

1F SUBSCRIPTEQ,
VERIFY SUBSCRIPT(S)

I

SUBPROGRAM

ADJUST
ACCUMULATOR
TQ SPECLFIED

LENGTH

TRANSFER
DATA TO
ACCUMULATOR

PROGRAM LSG

137

current subscript range of the variable, Program LSG then reallocates
the system accumulator (row 90 of the data table {2.}) to the length of
the data to be loaded and transfers the specified data from the variable

storage to the system accumulator.

4.6.8.2 Subclass 2 - The operators in this class may have the
system accumulator specified as the operand. If the operand is not the
accumulator, the storage information for the operand is obtained (see
Section 4.6. 1) and the system accumulator is adjusted to the length of
the operand data., The individual interpreter operation specified is then
performed in floating point on the data or accumulator and the result

is placed in the system accumulator.

4.6.8.3 Subclass 3 - For the binary operations, program LSG
locates the storage information for the operand. The length of the operand
and of the system accumulator are compared. If the lengths are the same
or if the lengths are not the same but either one has length one, the opera-
tion is valid., If the operand and accumulator are the same length, the
specified operation is performed between corresponding elements. (For
a binary operation, the accumulator is the first operand and the operand
appearing with the operator is the second operand.) If the lengths are
unequal and the operand has length one, the operation is performed
between the scalar operand and each element in the accumulator. If
the lengths are unequal and the accumulator is of length one, each
element in the operand data is operated with the constant after the
accumulator has been expanded to the length of the operand. For all

operators in subclass 3, the result is placed in the system accumulator.

4,6,8.4 Subclass 4 - For the relational operators in this sub-
class, a branch to a nonsequential interpreter instruction may be
performed, based on the value of the single element in the accumulator.
The following list identifies each relation and the accumulator condition

upon which a branch is taken:

138

LT - positive or zero
GT - negative or zero

EQ - positive or negative
NE - zero

GE - negative

LE - positive,

When a branch is taken, the current location {4-1} is incremented by

the operand minus one,

On the GO TO instruction, the user may terminate execution

and cause a reset of the system using sense switch 14:

Switch 14 OFF (down) - continue execution
Switch 14 ON (up) - reset system.

If a reset is required, program LSG sets the previous variable count
{1.1.3} to zero and routes system flow to subsystem 1, entry 1 by

setting the output parameter to three.

If a reset is not required, program LSG does the following:

® Set the pointer to the last executed branch instruction {17.}
to the current location {4~1}

® Set the output parameter to two

® Increment the current location by the operand minus one if
the operand is not zero,
4,6.8.5 Subclass 5 - If a link to the data table {2.} does not
exist for the variable operand (see Section 4. 6. 1), the next available
row in the data table as specified by the data table entry count {10.} is
assigned to the variable, the entry count is incremented, and the link
is set for the variable in the variable linkage area of the user program

being executed.

The store instruction may have one or two additional operands,

each specifying a subscript. Program LSG obtains the value of any

139

additional operands. If the variable is not subscripted, program LSG
will exchange the data table entries for the variable and the system

accumulator if one of the following conditions exists:

® Storage is not currently allocated for the variable

® The store instruction is immediately followed by an instruction
in one of the following classes (the classes and subclasses are
described in the description of the subsystem, Section 3.4):

A Class 2

A Class 3

A Class 5, subclass 1

A Class 6, subclasses 1 and 4
A Class 7

e The store instruction is immediately followed by an instruc-
tion of one of the following types with an operand other than
the system accumulator

A Class 4

A Class 5, subclass 2

A Class 6, subclasses 2 and 3
A Class 8

® The program being executed is in the program construction
area {1.1} (the current program pointer {8.} is one) and
the current instruction, as specified by the current location
{4-1}, is the last instruction to be executed {6.}.
If the data table entries cannot be exchanged, the amount of storage
allocated for the variable is adjusted to equal the length of the system

accumulator and the data in the accumulator is duplicated in the variable

storage,

If the variable is subscripted and the subscripting refers to an
element or elements currently existing in the variable data, the data in
the system accumulator is transferred to the data element or elements

of the variable specified by the subscripting.

140

If the variable is subscripted and the subscripting is beyond the
current length of the variable, temporary storage of length equal to the
higher (of only) subscript is allocated, If storage is currently allocated
for the variable, the data in that storage is transferred to the temporary
storage and the storage assigned to the variable is freed. The storage
information (location and length) for the temporary is transferred to the
variable entry in the data table. The data in the accumulator is trans-

ferred to the specified element(s) of the variable.

4.6.8.6 Subclass 6 - The free temporary instruction may have
either one or two operands. If one operand appears, aLny data storage ‘
assigned to the operand is made available for further use. If two
operands appear, any storage allocated to the two operands and to vari-
ables with reference numbers in the range delimited by the two operands

is returned to free storage.

4.6.9 Program TRG

Program TRG executes the class 6 interpreter instructions.
The program is provided the operator code {3.1-2}, the first operand
{3.2-2}, the current location {4-1}, and the subclass {3.7-2} which

indicates the following instructions:

- ARRAY (RANGE)

- MIN, MAX, INTERVALS, SUMF

- LN, ATAN, ABS, TANH, SUM, MAGNITUDE
- SHIFT

exponentiation.

Ol W NV =

For all operators, program TRG validates the operand according to
Table 2-4. The location and length of the operand data is obtained using
the method described in Section 4.6.1. Program TRG then performs

the separate functions shown in Figure 4-18 for the various operators.

4.6.9.1 ARRAY - For the ARRAY function, program TRG

obtains the values of the three scalar operands. The system accumulator

141

142

ENTRY

CLASSIFY AND
VAL IDATE OPERAND

OBTAIN LOCATION
AND LENGTH OF
DATA

SUBPROGRAM AJS

0BTAIN TWO ADDI~ ADJUST LENGTH GENERAT
ARRAY TIONAL SCALAR OF ACCUMULATOR Ao Ap WMBERS
INSTRUCT ION? OPERANDS T0 ONE PLUS THE
SET CURRENT VALUE OF THIRD Z'Eécfm IN
LOCATION OPERAND UMULATOR

SUBPROGRAM AJS SUBPROGRAM MOV

MINIMUM OR
MAXIMUM
INSTRUCTIONS

TRANSFER

OBTAIN MINIMUM OR ADJUST LENGTH

MAXIMUM VALUE OF OF ACCUMULATOR SAVED MINIMUM

OPERAND DATA 0 ONE OR MAXIMUM TO
ACCUMULATOR

INTERVALS
INSTRUCTION

SUBPROGRAM AJS

ADJUST
SET ACCUMULATOR VALUE
AEEH%EA‘%R T0 LENGTH OF OPERAND EXIT
o ONE PLUS ONE

SUBPROGRAM AJS

CALCULATE AND SAVE
SUM OF ALL ELEMENTS
IN QPERAND DATA

ADJUST
LENGTH OF
ACCUMULATOR
TO ONE

TRANSFER
SAVED SUM

T0
ACCUMULATOR

SUBPROGRAM AJS

ADJUST
COMPUTE RUNNING SUM
LENGTH OF
ACCUMULATOR | OF ELEMENTS OF OPERAND
TO LENGTH PLACE RESULT IN
OF OPERAND ACCUMULATOR

EXIT

MAGNITUDE

INSTRUCTION? RATSE 10 TO THAT POMER

FOR EACH ELEMENT IN THE OPERAND,
?STERHINE THE REQUIRED POWER OF

PLACE RESULT IN THE ACCUMU

PERFORM SPECIFIED OPERATION ON
EACH DATA ELEMENT

PLACE RESULT IN ACCUMULATOR

SUBPROGRAM AJS

SHIFT
INSTRUCTION ?

CHECK DIMENSION COMPATABILITY
EXPAND SCALAR ACCUMULATOR IF REQUIRED

PERFORM OPERATION BETWEEN ACCUMULATOR
AND DATA USING "INTEGER EXPONENT WHERE
POSSIBLE

PLACE RESULT IN ACCUMULATOR

EXPAND
ACCUMULATOR
T0 LENGTH
OF DATA

SUBPROGRAM AJS SUBPROGRAM MOV

SAVE VALUE OF FIRST OPERAND

OBTAIN LOCATION AND LENGTH
OF SECOND QPERAND

SET CURRENT LOCATION

ADJUST LENGTH
OF ACCUMULATOR
TO LENGTH OF
SECOND OPERAND

TRANSFER DATA TO
| ACCUMULATOR PER-

FORMING SHIFT AS

REQUIRED

\ MOVE
SPECIFIED
§ DATA

EXIT

FIGURE 4-18. PROGRAM TRG

LATGR
EXIT

is set to a length equal to the third operand plus one. The floating point
numbers are generated and stored in the system accumulator: the first
element is set to the value of the first operand; the last element is set

to the value of the second operand; and the remaining numbers are
generated at equal intervals between, as determined by the third operand.
The current location {4.1} is updated to the instruction word containing

the third operand.

4.6.9.2 MIN or MAX - Program TRG obtains the minimum

or maximum value in the operand data. The selected value is stored in
the temporary register, KODE (1143) and KODE (1144), in the user data
area {1.3.1}. The accumulator is adjusted to length one and the saved

minimum or maximum is transferred to the accumulator.

4,6.9.3 INTERVALS - The system accumulator is adjusted

to length one and set to the length of the operand data minus one.

4.6.9.4 SUMF -~ The elements in the operand data are summed
and the total is stored in the data temporary, KODE (1143) and KODE
(1144). The system accumulator is adjusted to length one and set to the

total.

4.6,9.5 LN, ATAN, ABS, and TANH - The system accumulator

is adjusted to the length of the operand. The specified operation is
applied to each element of the operand and the result is placed in the

system accumulator.

4.6.9.6 SUM -~ The system accumulator is adjusted to the length
of the operand. A running summation is performed on the operand data,

placing each sum in the corresponding position of the system accumulator.

4.6.9.7 MAGNITUDE - The system accumulator is adjusted to

the length of the operand. For each element x in the operand, the

following is computed:

143

® k = loglox

10 #% (k-1)
10 *% k

e ifk < 0, r
ifk 2 0,1‘

where r is the result placed in the system accumulator,

4.6.9.8 SHIFT - The SHIFT operator has two operands. Pro-
gram TRG saves the value of the first operand and obtains the location
and length of the second operand, which is the variable to be shifted.
The current location {4-1} is incremented by one. The system accumu-
lator is adjusted to the length of the second operand, The minimum
shift is determined using the first operand and the length of the second
operand, If the shift is zero or equal to the variable length, no shift
is performed. The variable data is transferred directly to the a;:cumu-
lator. When a shift is required, the data is transferred to the accumu-

lator, making the shift part of the transfer.

4,6.9.9 Exponentiation - The length of the system accumulator

and the operand data are compared. If equal, each element in the system
accumulator is raised to the power which is the corresponding element

in the operand data. If the operand is a scalar, each number in the
accumulator is raised to that power. If the system accumulator is a
scalar and the operand is an array, the accumulator is expanded to the
length of the array, the scalar is duplicated in each position of the
accumulator, and the operation is performed. When performing the
operation exponentiation, the number is raised to an integer power rather
than a floating point power whenever possible, The result is placed in

the system accumulator.

4.6.10 Program TAB

The: interpreter instruction TAB is executed by this program
which is shown in Figure 4-19. The program is provided the first

operand {3. 1-2} and the current location {4-1}. Program TAB outputs

144

Co)

‘

SET MAXIMUM
NUMBER OF
OPERANDS
PER CYCLE

FOR EACH CYCLE:

OBTAIN LOCATION AND LENGTH OF
REMAINING OR MAXIMUM NUMBER OF
OPERANDS

FORMAT EACH LINE AND OUTPUT ON

SELECTED DEVICE (NUMBER OF LINES
BEING SPECIFIED BY LENGTH OF

LONGEST OPERAND)

:

SET CURRENT
LOCATION TO
LAST
OPERAND

EXIT

FIGURE 4-19. PROGRAM TAB

145

data in fixed point or floating point format, depending on the status of
sense switch 1:

Switch 1 OFF (down) - fixed point format
Switch 1 ON (up) - floating point format

and on the device designated by sense switch 0:

Switch 0 OFF (down) - typewriter

Switch 0 ON (up) - printer.
The program outputs up to seven numbers per line in floating point
format and eight numbers per line in fixed point format. This number
(seven or eight) is the maximum number of arguments of the TAB in-
struction which are processed at once. The program cycles, taking
the maximum number of arguments at a time until all the arguments
have been processed. On each cycle, the location and length of each
operand is obtained and saved. When all or the maximum number of
operands have been located, the program finds the length of the longest
operand. This length is the number of lines TAB will output in the
current cycle. The program formats each line, taking the correspond-
ing element from each variable to output. When all the elements of a

variable have been output, blanks are output in succeeding lines.

To format a line, program TAB transforms each floating point
number to the corresponding string of characters in the proper format.
The individual characters are output in EBCDIC code. For each of the
two formats, the transformation is designed to make the output of TAB
identical to that obtained by a normal FORTRAN write statement. To
make the transformation, program TAB uses a character table and a

round off control table on the system control file {22, 3}.

The user may skip or terminate the execution of the TAB

instruction using sense switch 13:

Switch 13 OFF (down) - normal execution
Switch 13 ON (up) - terminate execution.

146

Program TAB monitors the status of sense switch 13 and suppresses
execution as required. Whether the TAB instruction is executed or not,
the current location {4-1} is updated by TAB to point to the word in
KODE containing the last operand for the TAB instruction.

4.7 PROGRAM LST

Program LST, shown in Figure 4-20, executes the user utility
commands: LIST program name, LIST ALL, and EXPLAIN system
label. The type of entry to program LST {3.10-1} is set by subsystem
2 to indicate the command to be executed

+ - LIST program name - set to the number of records on the

user program file {21.} occupied by the statement count,

statement index table, and the source statements of the
program

0 - EXPLAIN system label
- - LIST ALL.

For the LIST program function, the FORTRAN record control {7.} has
been set to the record on the user program file at which the statement

count is stored for the program.

The LIST control {3.9-2} contains the beginning record number
on the user program file for the internal form of the program to be
listed. For EXPLAIN, the control {3.9-1} points to the row in the
system explanation table {22. 7} on the system control file {22.}
corresponding to the label to be explained. The user has control over
the program through the following settings of sense switches on the

1130 console keyboard:

147

YIINTUd
NO lnd1no

1

Wd0d4

IS7T Wydo0ud "02-v JdN9Id
1IX3
» v =3I <

TYNYILINT Qv

W04
TYNYAINI
indino

a4y) o
Y3INIAd

YALNIYd
YILTYMIdAL
40 ¥IINIHd NO
NOILdI¥3S3d Indino

ol
at

YIINIYd YILTEM
-3dAl ¥0 YIINTHd
NO Q3d1nd3y
41 NOILVWYOJINI
I9VH0LS
aNY S3IWYN 1nd1ino

ENIE] NOT1dT¥JS3a
T0ULINOD 1 - 134v1
W31SAS W31SAS Qv3y

YILIYMIdAL
0
d3INIYd NO
310343 ind.1no

310293 0J $3002
NYYIWY WOYd SINIW
~31ViS 324n0S I1H3ANGD

¥

ERIE!
T041INOD
W3LSAS

BRI
310243 Qv

%

SINIWILVLS
326n0S av3y

£ SIWYN
HWYH90Ud
1811

NVI90ud

S3A Is11

A41INI

T

31a3%43 01 S3a00
NVIINY LY3ANGD

o

378yl
310083 av3y

379¥1 JO04INGD
WY4908d QY3d

&Q3NI143a
SWY90dd

ENIE
T04INDD
WALSAS

d3INTYd
YILTUMIdAL

40 d3INI¥d NO
JFIYSSIN LNdLNO

148

Sense Command(s)
Switch Affected Settings
0 LIST, OFF - output on typewriter printer
LIST ALL, ON - output on printer
EXPLAIN,
2 LIST OFF - internal form not listed
program ON - internal form listed on printer
LIST ALL OFF - file storage information not output
ON - file storage information output with
program names
12 LIST OFF - listing only
program ON - program source statements punched
on cards
13 LIST OFF - normal output
program, ON - output suppressed or terminated if
LIST ALL, in process,
EXPLAIN

The actions taken by LST to perform each of the three operations are

described below. After completion of the output functions, the error

indicator {9.} is set to nonzero so that the statement count {18.} will

not be incremented.

The system flow goes to subsystem 2 for input

of a new source statement.

4,7.1 LIST Program Name

To list a program, the source statements are read from the
user program file. Each word contains two AMTRAN coded characters.
The characters are unpacked and converted to EBCDIC codes using the
EBCDIC table on the system control file {22.4}. As each carriage return
or end of statement is encountered, an unpacked line is output on the
selected device. If requested, the internal form of the program is read
from the file and output with the interpreter instructions unpacked into

the operator and operand codes.

149

4,7.2 EXPLAIN System Label

The row in the system explanation table {22.7} specified by
the EXPLAIN control {3.9-1} is read from the system control file.
This provides the record number on the file at which the explanation
begins and the number of records in the explanation. The records
containing the explanation are then read from the file {22.8}. The
explanation is output in A2 format one line at a time. Lines are
separated in the stored explanation by a word containing the special

symbols $$ (the integer equivalent is 23387).
4,7.3 LIST ALL

The user program table {21.4} is read from the user program
file. The six characters in each program name are unpacked and
converted from AMTRAN to EBCDIC codes. The labels are output in
EBCDIC on the selected device with the program storage information,

if requested.

4.8 SERVICE SUBPROGRAMS

4.8.1 Subprogram KYBRD

The Assembler language subprogram KYBRD, shown in Figure
4-21, is called by programs RDLL (subsystem 1) and STV (subsystem
4) to provide the link from these FORTRAN programs to the Assembler
language subprogram TYPAM which cannot be directly called from
FORTRAN and which reads the console keyboard. Subprogram KYBRD
is called with one parameter which is the beginning location of the
FORTRAN array into which subprogram TYPAM is to place the input
statement. Subprogram KYBRD places this parameter in the machine

accumulator before calling TYPAM.

150

»<:: ENTRY ;:)
.

PLACE PARAMETER
IN ACCUMULATOR

SUBPROGRAMl TYPAM

OUTPUT SIX
CHARACTERS

READ AMTRAN
STATEMENT
FROM KEYBOARD

:

-«

FIGURE 4-21. SUBPROGRAM KYBRD

151

4,8.2 Subprogram TYPAM

The Assembler language subprogram TYPAM, shown in Figure
4-22, reads a complete AMTRAN source statement from the console
keyboard and outputs the statement on the console printer. Subprogram
TYPAM, when executed, temporarily replaces the normal interrupt
service routine for the keyboard/printer. On entry to TYPAM, the
interrupt branch address for interrupt level 4 (core location 12) is
replaced with an entry point into TYPAM. The original address is

restored before an exit from TYPAM.

The beginning location of the array into which the statement is
to be read is passed to TYPAM in the machine accumulator from sub-
program KYBRD. Subprogram TYPAM first outputs the first six
characters in this array and then reads the statement into the remainder
of the array. (If the subprogram is being called indirectly from program
RDLI1, the six characters are the statement number; if the call is from
program STV, the characters are blanks.) The statement is placed in
this array as a string of AMTRAN coded characters, one character per
word. One character at a time is read and checked for the control

characters:

@ Carriage return: the <— button on the keyboard

® End of statement: the EOF button on the keyboard.
If the character is not one of these, it is output on the console type-
writer and placed in the output array in AMTRAN character code (see
Table 4-2). If the character is one of the following, the action

described is taken:

e Backspace (the # button on the keyboard) - remove the back-
space and the preceding character from the output array

e Delete (the $ button on the keyboard) - remove the $ char-
acter from the output array.

152

(:: ENTRY j:>
'

OUTPUT FIRST SIX CHARACTERS IN INPUT
ARRAY

READ AMTRAN SOURCE STATEMENT FROM
KEYBOARD, PLACING CHARACTERS IN ARRAY
IN AMTRAN CHARACTER CODES

READ UNTIL END OF STATEMENT OR 297TH
CHARACTER

PERFORM TASKS AS REQUIRED FOR BACK-
SPACE, LINE DELETE, STATEMENT DELETE,
CARRIAGE RETURN AND END OF STATEMENT

SET REGISTER TO STATEMENT SIZE

o

FIGURE 4-22, SUBPROGRAM TYPAM

153

On the carriage return and the end of statement, the program
determines if a $ or a $$ sequence has been entered in the current line,
but not backspaced out, or if a backspace has been entered. If a $ has
been entered, indicating a delete line action, the current line (except for
the first six characters) is deleted from the output array and the program
outputs the first six characters in the line and rereads the line from the
keyboard. If a $$ has been entered, indicating a delete statement action,
the entire statement is deleted from the array and the program types the
first six characters again and reads the new statement. If a backspace
has been entered on the current line, the corrected line is output on the
typewriter and subprogram TYPAM continues to read the input line. If
none of these conditions exists when a carriage return is entered, the

following tasks are done:
e Enter a carriage return and six blanks in output array

® Output a carriage return and six blanks to the console
typewriter

e Read a new input line.

The actions caused by the entry of a carriage return are also taken
when the seventy-fourth character has been entered in a line. When

the end of statement is entered and a $, $$, or backspace has not
occurred in the current line, the read of a source statement is termi-
nated. Before exiting, program TYPAM places a period at the end of
statement in the output array, types a period and sets the working
register {5.} to the total length of the statement. The actions caused
by the entry of the end of statement are also taken when the output array
contains 297 characters. However, in this case, the final period is not

placed in the output array or typed.

4,8.3 Subprogram SERCH

The Assembler language subprogram SERCH, called only by

program SCA (subsystem 2) and shown in Figure 4-23, is used to

154

(::44 EN?RY j:)
18

OBTAIN SEARCH PARAMETERS

SEARCH TABLE FOR REQUESTED
LABEL

SET INDICATOR
TO ZERO

SET INDICATOR TO
ROW CONTAINING EXIT
LABEL

FIGURE 4-23. SUBPROGRAM SERCH

155

search for a particular label in either the variable table {1.2-1.5},
the system label table {22.1}, or the user program table {21.4}. The
following arguments are provided through the parameter string to

SERCH in the order listed:

® The location in core of the beginning of the table to be
searched

® The number of rows in the table

® The number of rows to be searched, beginning with the first
row.

The label to be located in the particular table is always provided in three
words in COMMON, beginning with KODE (737). The label consists of six
characters packed two AMTRAN coded characters per word. The labels
in each of the tables are in the same format and occupy the first three
columns of each table. (The tables are stored in core by columns.)
Subprogram SERCH searches the indicated table unﬁl either the requested
label is found or the prescribed number of rows have been searched. If
the label is located in the table, the working register {6.} is set to the
number of the row in which the label is entered. Otherwise, the register

is set equal to zero.

4.8.4 Subprogram AJS

Subprogram AJS, shown in Figure 4-24, makes changes in the
storage allocation for data upon request from the programs in sub-
system 4 and program DLT in subsystem 1. The subprogram is called

with three parameters which contain the following information:

Parameter Contents
1 Current location of contiguous storage block:

subscript of beginning location in a floating
point array equivalenced to KODE

156

=
'

SUBPROGRAM FRE ADJUST STORAGE BLOCK TO SUBPROGRAM GET
REQUESTED LENGTH | BTAIN
RELEASE

RELEASE CURRENT STORAGE STORAGE
SPECIFIED AND/OR OBTAIN NEW STORAGE BLOCK OF
SEESQEE BLOCK, AS REQUIRED SPECIFIED

SET FINAL LENGTH AND LENGTH
LOCATION

=

FIGURE 4-24. SUBPROGRAM AJS

157

Parameter Contents

2 Current length of the block: number of float-
ing point words

3 Requested length of the block: number of
floating point words.
The subprogram may be called with parameters 1 and 2 equal to zero,
indicating a new block is to be obtained. The third parameter is zero
if the entire block is to be released. Also, the current and requested

lengths may be the same.

Subprogram AJS adjusts the block to the requested length
which may involve both releasing storage and obtaining new storage.
The first two parameters are changed, respectively, to the following

information prior to exiting from AJS:

Parameter Contents
1 Final location of storage block: subscript of

beginning location in a floating point array
equivalenced to KODE

2 Final length of storage block: number of float-
ing point words.

The subprogram does not move any data.

4.8.5 Subprogram GET

Subprogram GET obtains a block of specified length from the
available storage in the user data area {1.3.1}. The length of the
contiguous block to be obtained is provided in the allocation parameter
{3.10-2}. The length is the number of floating point words required.
Subprogram GET sets an output parameter {3.9-3} to one of the follow-

ing values:

158

<0 - error in storage allocation
0 - a block of the requested length is not available

>0 - the subscript in KODE at which the block of the requested
length begins.
The information specifying what storage in the data area is
currently available is maintained by the data storage count {12.} and
a linkage system in the data area. Each link is two integer words

which contain the following information:
Word 1 - location of word 1 of next link (subscript in KODE)

Word 2 - number of contiguous floating point words in the
block beginning with the next link pair; the number
includes the link as one floating point word.

The first link is always stored in KODE (1141) and KODE (1142). The
last link in the chain always contains zeros., The links are ordered in
the data area, so that each link points to a link in a higher subscript
location. The linkage is initialized to reflect the initial condition of

one 604 floating point word block in the data area.

The functions of subprogram GET are described as four tasks
which are shown in Figure 4-25. Unless otherwise stated, the tasks

are executed in the order in which they are presented.

4.8.5.1 Task 1 - Subprogram GET checks the data storage

count {12.} to make sure the requested storage is available.

4,8.5.2 Task 2 - Subprogram GET works through the linkage
chain to find the first storage block of at least the requested size. When
such a block is located, subprogram GET adjusts the current linkage to
remove either the entire block or the requested number of words from
the beginning of the block. The subprogram sets the output parameter
{3.9-3}, decrements the data storage count {12.} by the number of
words removed from the available storage, and returns to the calling

program.
159

REQUESTED
BLOCK SIZE
AVAILABLE?

SET OUTPUT
PARAMETER
TO ZERO

{

oar)

—-OT

SEARCH LINKAGE FOR FIRST -
BLOCK OF REQUESTED OR
GREATER LENGTH

BLOCK
LOCATED?

SEARCH
FOR

CONTIGUOUS

BLOCKS?

SUBPROGRAMwy GARB

PLACE ALL
AVAILABLE

REMOVE BLOCK OF REQUESTED
LENGTH FROM AVAILABLE STOR-
AGE LINKAGE

SET OUTPUT PARAMETER TO
LOCATION OF BLOCK

SEARCH LINKAGE COMBIN-
ING ANY CONTIGUOUS
BLOCKS

ANY
CONTIGUOUS
BLOCKS
FOUND?

STORAGE
IN ONE
BLOCK

160

FIGURE 4-25, SUBPROGRAM GET

4.8.5.3 Task 3 - If a block of large enough size is not located,
the linkage is again followed, looking for any blocks which are contiguous.
When two contiguous blocks are located, the blocks are combined into
one block by removing one link and incrementing the word count in the
appropriate link., If contiguous blocks do not occur, task 4 is executed
next; otherwise, task 2 is executed. If the appropriate storage is not

located by task 2, task 4 is then performed.

4.8.5.4 Task 4 - Subprogram GARB is called to move all
currently allocated storage into one contiguous area and, thereby,
provide one block of available storage of length equal to the data stor-"

age count {12.}. Task 2 is then performed.

4,8.6 Subprogram GARB

The Assembler language subprogram GARB, called only by
subprogram GET, moves all currently used storage in the user data
area {1.3.1} into one contiguous block beginning at KODE (1145) and,
thereby, provides one block of available storage at the end of the data
area and of length equal to the current value of the data storage count

{12.}. Subprogram GARB is shown in Figure 4-26.

The data table {2.} is used to control the movement of data
blocks. A search of the currently used rows of the data table is made
to find any rows with zero entries in the first column. The number
of rows is specified by the data table entry count {10.}. The row
reserved for the accumulator is also included in the processing. Each
of the zero entry rows is counted as already processed. The remainder
of the rows are then processed using the following algorithm where the
temporary count is first initialized to 573,

® Locate that entry in the data table which has the smallest

value in column one greater than or equal to the temporary
count.

161

162

<::; EN?RY ::>
:

USING THE DATA TABLE, MOVE ALL

DATA DOWN IN THE DATA AREA
REMOVING AVAILABLE BLOCKS
BETWEEN DATA BLOCKS AND UP-
DATING ENTRIES IN THE DATA
TABLE

SET AVAILABLE STORAGE LINKAGE

=5

SUBPROGRAM MOV

MOVE DATA
BLOCK AS
SPECIFIED

FIGURE 4-26. SUBPROGRAM GARB

e I'or this entry, move the number of floating point data
words specified by column two from the location specified
by column one to the location specified by the temporary
count,

@ Set column one to the temporary count.

® Increment the temporary count to the first word after the
moved data.,

The first link, KODE (1141) and KODE (1142) (see Section 4.8.5 for an

explanation of the available storage linkage), is set to the following:

KODE (1141) - subscript in KODE which is the equivalent of
the final value of the temporary count

KODE (1142) - total number of floating point words available.

The second link (the location is specified by the first link) is set to

Zeros.

4,8,7 Subprogram FRE

Subprogram FRE is called to release storage in the user data
area {1.3.1} for further use. The two input parameters {3.9-3} and

{3.10-2} provide the following:

{3.9-3} - the subscript location in a floating point array
equivalenced to KODE at which the block to be
released begins

{3.10-2} - the number of floating point words comprising the
block.

Subprogram FRE moves along the available storage linkage (see Section
4, 8.5) until either the last link or the first link after the block to be
released is located. The current linkage is adjusted to include the

newly available block.

4,8,8 Subprogram MOV

Subprogram MOV is called to move data within the COMMON

array KODE, Three parameters are provided in a call to subprogram

163

MOV. All of the parameters are relative to a floating point array
equivalenced to the integer array KODE., The parameters contain the

following information:

Parameter Contents
1 Subscript location to which data is to be moved
2 Subscript at which data currently is stored

(subscript of first element)

3 Number of contiguous floating point words to
be moved.

Subprogram MOV calculates the integer subscripts (the actual sub-
scripts in KODE) corresponding to the first two parameters and moves

each floating point word as two integer words,

4.8.9 Subprogram SHF

Subprogram SHF exchanges entries in the data table {2.}.
Subprogram SHF is called with two parameters, each of which specifies
a row in the table. The column 1 and column 2 entries in these rows

are exchanged.

4.9 FILE INITIALIZATION PROGRAMS

The file initialization programs are each executed independently

and must be executed before executing the systems.

4.9.1 Program INTL3

Program INTL3 initializes the first three records on the user

program file {21. }:

Record Designation Initial Value
File status {21.1} 0
First available record {21.2} 580
Number of programs {21, 3} 0.

164

4.9.2 Program ALTS5

Program ALTS5 initializes all of the system control file {22,}
except the system explanation areas {22.7} and {22.8}. The program

performs five distinct tasks.

4.9.2.1 Task 1 - The AMTRAN character set is read from an
input card. The characters are punched one per column, beginning
with column one, and are punched in the order in which they are listed

in Table 4-2. The characters are read in Al format: the codes become

the EBCDIC table {22. 4}.

4,9.2.2 Task 2 - Program ALTS5 either initializes or modifies
the system label table {22.1}, depending on the status of sense switch
10:

Switch 10 OFF (down) - initialize table
Switch 10 ON (up) - modify table.

If the table is to be initialized, it is first set to contain blank
labels: all entries are set to 2570 which is the code for two AMTRAN
character coded blanks packed in a single word. If the table is to be

modified, the current table is read from the file.

The program then reads cards which contain the following

information in the indicated columns:

Columns Contents
1-3 Integer (right justified) specifying row in which

label is to be entered
6-11 Label (left justified)

20-23 Integer (right justified) which is the code to be
entered in column 4 of the table .

One card at a time is processed. The label is read in Al format,

converted to AMTRAN character codes using the table obtained in

165

task one, and packed into three words. The label and code are entered
into the table in the specified row. The program continues to process
cards until a negative or zero row is specified. The completed table
is then written on the file. If the table was only modified, the remain-

ing tasks are not performed.

4.9.2.3 Task 3 - The array {22.2} used by program SCB for
reformatting a REPEAT statement is initialized to the sequence: 430,
264, 386, 268, 430, 264, 430, 261, 387, 268, 218, 265, 430, 262, and

265. Each code is placed in one word.

4.9.2.4 Task 4 - The array {22.3} used by programs STV

and TAB is initialized by setting the first four words, respectively, to
1, 10, 100, and 1000 and by reading the remainder of the information
from a card. The card is punched with thirty characters and is ‘read
in Al format. The first seventeen characters are the character subset
used by STV followed by the character $. The characters are punched
in the order in which they are listed in Table 4-6 and are read into the
last seventeen words of the array. The remaining thirteen characters
are the sequence 0.00000E 00 - and are placed in order in the array,
beginning in word 5. The completed array is written on the disk,

followed immediately by the table obtained in task 1.

4,9.2.5 Task 5 - To place the error messages {22.6} and
control table {22.5} on file, the program reads each message from
one punched card in A2 format into a forty-word array. Beginning
with the fortieth word, the program searches backwards until the
sequence ** is located in the array. This is the end of the error
message, The program places the current record number in the
next row of the table. (The record number begins at 601,) The
program writes the message through the ** on the file, beginning
at the current record number. The record number is then incre-
mented by the length of the message. A blank card will cause an

entry to be made in the table; however, nothing with be written on

166

the disk. The program always reads seventy cards., When all cards
have been read and the table is complete, the control table {22.5} is

written on the disk.

4,9.3 Program ALT5A

Program ALTS5A initializes the system explanation control

table {22.7} and explanations {22.8} on the system control file {22, }.

The control table is generated as the explanations are read
from cards. The table is first cleared, a word count is set to zero,
and the file control is set to 2212, Each explanation is punched on
consecutive cards. The last card contains a $$ sequence beginning in
an odd numbered column to indicate the end of the explanation. Each
card is read in using a 40A2 format. Beginning at the end of the card
image, the program searches backwards to locate the first nonblank
characters. If the nonblank word does not contain the sequence $$,
the following steps are done:

@ Transfer the characters to a working array beginning at the
word count. The trailing blank words are not transferred.

e Place a $$ (integer 23387) in the next word of the working
array.

o Set the word count to point to the word in the working array
after the $$.
If the card contains only blanks, the entire sequence of blanks is trans-

ferred to the working array. When the $$ sequence occurs, all of the

preceding words are transferred to the working array and the word
count is incremented to the last word occupied in the array. Column
one of the control table is set to the current value of the FORTRAN
record control. Column two is set to the word count for the explana-
tion. The explanation is written on the file at the record specified

by the record control.

Fifty-six explanations are read and processed. The completed

control table is then written on the file.

167

4,10 MODIFIED 1130 LIBRARY SUBROUTINES

To include the semicolon in the AMTRAN character set, it was
necessary to modify the library subroutines HOLTB and EBCTB. The
routines are the card/keyboard code table and console printer code
table, respectively, and are used by the FORTRAN input/output routines,
In the tables, the codes for a percent sign were replaced with the codes

for a semicolon.

168

APPENDIX A. ERROR MESSAGES

Table A-1 lists the error messages output by program RTN in
subsystem 4. The error number is the value to which the error indi-
cator {9.} is set for each error. Table A-2 shows, for each error
number, the programs in the system which detect the particular error
and set the error indicator accordingly. Programs AMTRN, CTL,
1TZ, RST, KYBRD, TYPAM, and SERCH which do not appear in

Table A-2 either do not detect errors or output error messages directly.

169

Number

—
OWORONOOT B WN -

170

TABLE A-1. ERROR NUMBERS AND MESSAGES

Message

INCOMPLETE SUBSTATEMENT

ILLEGAL FORMAT FOR IF STATEMENT

ILLEGAL USE OF LIST OR EXPLAIN

ILLEGAL USE OF GO OR TO

LEFT AND RIGHT PARENTHESES UNBALANCED

SYSTEM ERROR - ILLEGAL CHARACTER IN POLISH STACK
ILLEGAL USE OF INTERVALS

SYSTEM ERROR - UNBALANCED POLISH STACK

SYSTEM ERROR - ADDRESS IN DELIMITER LIST
PROGRAM EXCEEDS AVAILABLE CONSTRUCTION SPACE
UNDEFINED STATEMENT NUMBER IN GO TO STATEMENT
SYSTEM ERROR - EXTRANEOUS VARIABLE WITHOUT OPERATION
EXCEEDING CONSOLE PROGRAM STORAGE AREA
EXCEEDING MAXIMUM NUMBER OF CONSOLE PROGRAMS
THIS NAME HAS BEEN PREVIOUSLY DEFINED

CONSOLE PROGRAM NAME MUST EXCEED ONE CHARACTER
MULTIPLE DECIMAL POINT IN CONSTANT

UNUSED

ILLEGAL USE OF EDIT

SYSTEM ERROR - ILLEGAL OPERATION CODE

ILLEGAL PARAMETER STRING

UNDEFINED VARIABLE

ILLEGAL SUBSCRIPT

ILLEGAL ARRAY PARAMETERS

APPLYING RELATIONAL OPERATION TO NONSCALAR OPERANDS
SYSTEM ERROR - NEGATIVE ARRAY LENGTH

DIMENSION INCOMPATABILITY

ATTEMPTING TO STORE IN CONSTANT LOCATION
EXCEEDING DATA AREA - x1 WORDS AVAILABLE
SYSTEM ERROR - NEGATIVE OR ZERO TABLE REFERENCE
EXCEEDING CAPACITY OF DATA TABLE

SYSTEM ERROR - SORTING ERROR IN DELETE
EﬁﬁEEBING 54 CONSTANTS IN A CONSOLE PROGRAM
SYSTEM ERROR - NEGATIVE LINK IN DATA STORAGE
SYSTEM ERROR - ERROR IN STORAGE ALLOCATION
ILLEGAL USE OF SAVE OR DELETE

ILLEGAL OPERAND FOR PARTICULAR OPERATION
SYSTEM ERROR - NEGATIVE PROGRAM INDEX
EXCEEDING 29 VARIABLES IN A CONSOLE PROGRAM
ATTEMPTING TO EXIT AT KEYBOARD LEVEL

EXCESSIVE NUMBER OF PARAMETERS

INSUFFICIENT NUMBER OF PARAMETERS

EXCEEDING TEN CONSOLE PROGRAMS CALLED IN A PROGRAM
OPERATION CAN NOT HAVE SCALAR OPERAND

TABLE A-1 - Concluded

Number Message
46 STATEMENT TOO LONG
47 SYSTEM ERROR - NEGATIVE NUMBER OF PARAMETERS
48 ATTEMPTING RECURSIVE CALL TO A CONSOLE PROGRAM
49 SYSTEM ERROR - ERROR IN CORE ALLOCATION
50 UNDEFINED CONSOLE PROGRAM
51 CONSOLE PROGRAMS EMBEDDED MORE THAN TEN LEVELS
52 CONSOLE PROGRAM EXECUTION AREA IS FULL
53 ILLEGAL CHARACTER
54 EXCEEDING 45 STATEMENTS IN A CONSOLE PROGRAM
55 SYSTEM ERROR - ERROR IN EXECUTING TYPEOUT
56 UNUSED
57 STATEMENT INCOMPLETE
58 STATEMENT NUMBERS NOT IN SEQUENCE
59 DUPLICATE STATEMENT NUMBER
60 UNNUMBERED STATEMENT
61 ILLEGAL STATEMENT NUMBER
62 ILLEGAL STATEMENT
63 ILLEGAL USE OF NAME
64 ILLEGAL USE OF INTRINSIC
65 ILLEGAL SHIFT PARAMETERS
66 ILLEGAL USE OF TYPEOUT
67 UNUSED
68 UNUSED
69 LABEL TOO LONG

1The number of words available, x, is provided when the message is output.

171

X
X X
X X X X
X
- .
X [X X X [X [X
, X , X
X X X| X
X X | X XX
X
, X _
X X | X X | X
sz|vz|cz|zz| 12| oz|6L)8L|LL|oL] L] vL|€EL|aL]LL]oL 9|s|v|¢
WILSAS JHL NI SWY¥904d A9 G3LSINDIY SIDYSSIW UOWYI 2Z-¥ Iavl

172

344

tiebld]

139

>l <

SeY

157

gyl

L

><|><

><|><

951

L14M

S>> > |><

ALS

dufl

> ><[><|><|><

N1Y

d0139

e [0}

ALS

43S

YIS

110y

114

>[PPI P>

103

WYN

17

14

47

A

Ly

ov

6€

8¢

LE

9¢

1

123

€€

43

LE

Q
o

6¢

8¢

Le

92

weuabouy

4aqun
40443

panutjuo) - 2-y 379Vl

173

-

ELE

i tekis]

139

SOy

157

gyl

4L

951

1dM

ALS

dut

NLY

40139

e[(]

ALS

43S

¥iS

> > ><1><

110y

i1

1d3

WYN

69

89

L9

99

g9

79

€9

29

L9

09

69

89

LS

9%

gg

7S

€§

A

LS

0§

6t

5174

Ly

¥

euab04d

Jaquiny
04T

papniouel - 2-y 3gvl

174

APPENDIX B. PROGRAM LISTINGS

Listings for the programs in the system appear in this appendix
in the order in which the programs are described in Section 4. An
alphabetized index is provided on following page. Although the system
operates only under Version II of the 1130 Disk Monitor System,
because of core limitations the FORTRAN programs must be compiled
under Version I. The two Assembler language programs CTL and
GETOP must be assembled using Version II; however, the remaining

Assembler language programs can be assembled using either version.

175

Program

AJS
ALTS5
ALT5A
AMTRN
CDR
CTL
DLT
EBCTB
EDT
FRE
GARB
GET
GETOP
HOLTB
INTL3
I1TZ
JMP
KYBRD
LSG
LST
MOV
NAM
RDLL
RST
RTN
SCA
SCB
SERCH
SHF
STK
STV
TAB
TRG
TYPAM
WRT

Index to Program Listings

PROGRAM AMTRN

#LIST ALL

*10CS(CARD+1132 PRINTERSTYPEWRITERSDISK)

#ONE WORD INTEGERS

#LLIST SOURCE PROGRAM
COMMON KODE (2380) o IDAT(9092)1T(101)
110JoLollsIDsIEsIFToKONSLNTsLPVINCPoNVSIEXsIGT sNMBsNAP
DEFINE FILE 1(73609slsUsll)
DEFINE FILE 3(30720s10Us11)
DEFINE FILE 5(14080s1l9Usll)

1 CALL CTL
GO TO 1
END

177

KODE
KOP
KOA
kP

1D

LPV
T1EX
1GT
CTL

Lolz
LO1l

LO99

SwWl

L115
L100

L120
CHKIE

Lile
L119
L101

L102

L201

L300

178

ENT
EQU
£Qu
EQU
£Qu
EQuU
EQU
EQU
£EQU
EQU
£Qu
£QU
EQU

CALL
CALL
CALL
LD
BNZ
CALL
DC
LDX
BSC

¢
DC
ple
o<

0C
CALL

B
CALL
LD

BN
BNZ
CALL
LD
BNZ

CALL
CALL

CALL
LD
BNZ
CALL

BNZ
LD

BNZ
LD

$T0
LD
570

12
12

—

cTL
/TFFF
/15FF
/75FE
/15F9
/T5F5
/15F4
/75F3
/75F1
/T5F0
/T5EC
/75E9
/75E8

IT2
RST
RDLL
lE
L9119
SCA
LR
LR
SWl=1
L100
Lo12
Lils
L1l8
L1119
L9119
L120
LST
LO11
sCB
LR

TWO
L1011
L919
DLT

Lole
Lo12
NAM
CHKIE
EDT
CHKIE
STK
It
L9119
CDR

L919
IEX
ONE
LO11
LPV
ONE

ZRO
IGT
L4002

PROGRAM CTL

CTLO00010
CTL00020
CTLO004O
€TL00050
CTLOD06O
CTLOO070
CTL0008O
CTLO0090
CTL00100
CTLOO110
CTLO0L20
CTLOG130
CTLOO140
CTLOO150
CTLOO160
CTL00190
CTL00200
CTLO0210
CTL00220
CTL00230
CTLO0240
CTL00250
CTLO0260
CTLO00270
CTL00280
CTL00290
CTL0O300
CTLOO310
CTL00320
CTL00335
CTLOO0360
CTL00370
CTLOO0380
CTLO0390
CTL00400
CTL0O0410
CTLO0420
CTLO0430
CTLOO0440
CTLO0450
CTLO0460
CTLO04T0
CTLO0480
CTLO0490
¢TL00500
CTLOO510
CTL00520
CTL00530
CTLO0540
CTLOOS50
CTL0O0560
CTLOO570
CTLO0580
CTLO0590
CTLO0600
CTLO0610
CTL00620
CTL00630
CTLO064O
CTLO0650
CTLO066D

ONE
LR
ZRO
TWO
C3
L320
L400
L321

L401

L402

L301

Sw2

TAB1
L3061
L307
L309
L318
L3117

Sw3

L404

L9119

L405

DC
DC
bC
DC
DC
CALL
LD
BN
B8P
LD
STO
MDM
LD

8N
BP
LD

BN
CALL
LD
BNZ
LDX
BSC
D¢
DC
DC
DC
rle
DC
DC
DC
CALL

WAIT
CALL
CALL
CALL

CALL
D¢
LDX
BSC
DC
DC
0C
DC
LD
sT0
LD

BP
LD
$70
CALL
DC

12
12

—

WO O -

1€
L9119
L4044
2RO
IGT
Isl

ONE
L919
L301

L0111
GETOP
IE
L4044

Swa=1
L405
L307
L309
L320
L317
L318
L3061
TAB1
TAB
L400

L321
JMP
L400
STV
L400
TRG
L400
LSG
LR
LR
SW3=1
L321
L401
Lol2
L404&
TWO
KP
1D
ONE
L&0S

KP
RTN
LR

CTLO0670
CTLO0680
CTLO0690
CTLO0700
CTLOO710
CTLO0720
CTLOO730
CTLOO0740
CTLOO0750
CTLOO760
CTLO0770
cTLOO780
CTLOO0790
CTLOO0B800
CTLO0810
cTLO0820
CTLO0830
CTLO0840
CTL00850
CTLO0860
CTLO0870
cTLOO088BO
CTL00890
CTL00900
CTLOOS10
CTLOO0920
CTLOO930
CTLO0940
CTLO0950
CTLO0960
CTLOo0970
CTLO0972
CTLO0974
CTLO0976
CcTLO00%980
CTLO00990
CTLO1000
cTLol01l0
CTLol1020
CTLO1030
CTLO1040
CTLO1050
CTLO1060
CTLO1070
cTLOl080
CTLO1090
CTLO1100
CTLO1110
cTLol120
CTLO1130
CTLO1140
CTLO1150
CTLO1160
CTLO1170
CTLol180
CTLO1190
CTLO1200
CTL01210
CTLO01220

179

SWe

180

LDX
BSC

12 LR

12 SW4=1
L321
Lol
Lo12

CTLO1230
CTLO1240
CTLO1250
CTLO1270
CTLO1280
CTLO01290

#L1ST

PROGRAM ITZ
ALL

#ONE WORD INTEGERS

40
41
42

43
44

N

70

71
72

73

i0
75

100
11

121

SUBROUTINE IT2

DIMENSION KCLA{1)aKCLBI(1}

DIMENSION ICDLYL)

DIMENSION JO(2)sIW{2)Vs1CPT{9546)
DIMENSION DATA(1l)

COMMON KODE(2380)s1DAT(9002)0IT(10)
110 oo lToIDsIESIFToKONSILNT sLLPVSNCPINVIIEX2IGT osNMBINAP
EQUIVALENCE (ICD(1)sKODE(841))
EQUIVALENCE (IW(1)sKODE(T704))9(10(1)sKODE(L))»(ISFsKODE(1)) s
1{IFRIKODE{2)) s INPoKODE(3)) {ICPT(1s1)eKODE(4))
EQUIVALENCE (DATA(1)eKODE(1142))
??UIVALENCE (KCLA(1)}oKODE(972)) o (KCLB(1)oKODE(10221))

a2}

READ (3*'11)ISFsIFRWNCP

CALL DATSWI(241S8S)

GO TO{(40»42)918S

WRITE (3941)ISFeIFRINCP

FORMAT(1516)

IF{ISF)1lel9sl

IF(NCP)100+911s2

fi=s
READ(BIIN{CICPTIJoK)oKn1l96) s J=1oNCP)
GO TO(43944)9185
WRITE(3941)((ICPTIJoK)oK=196)pJm]lsNCP)
NN=D

1FR=s574

J=0

DO 7 K=1sNCP

IF(ICPTIKe4)=1IFR) 791004

IF(J)164645
IFCICPT(Jo4)=ICPTI(KIL))T74606

J=K

CONTINUE

IP=ICPT(Je4)

NM=ICPT(Js5)=P

NRI=NM+ICPT(Js6)

1CPT(Je4)=1FR

NR=NRI

IF(NR=1600)T72+72+71

NR=1600

IlI=1p

READ(3*ITI(IWIN)aN=1eNR)

IP=1]

II=1FR

WRITE(3*FI){IWIN)sN=1sNR)

1FR=IFR+NR

NRI=NRI=NR

IF{NRI)T73+73¢70
ICPT(Je5)=ICPT{J ok) +NM

GO TO 75
IFRaIFR+ICPT{Ks5)=ICPT(Ks4)+ICPT(Ks6)
NN=NN+1

IF{NN=NCP)3512812

NCP=O

IFR=574

IF{NCP=95)121s15415

MeNCP+1

DO 14 K=Ms95

181

DO 13 N=1s6
13 ICPT(KeN)=O
14 CONTINUE
15 1S8F=0
1=}
WRITE(3'IIIISFoIFRINCPs((ICPT(JoM)oMals6)oJdnl95)
GO TO (45919)9188
45 WRITE (3941)ISFeIFRoNCP
WRITE{39413{{ICPT(JoK)sK2196)sJsl sNCP)
19 DATALB607)=040
DATAL608)=1,0
DATAL609)=22,40
DATAL810)=3,40
DATA(611)=4,40
DATA(612)=5,0
DATA(613)126,0
DATA(614)=7,0
DATA(615)=8,0
DATAL616)39,0
DATA(617)=1040
DATA(618)=2341415927
DATA(619)1=5T,42958
DATA(620)=20,0174533
KCLA{1) =9
KCLA(2)=10
KCLA(2)=49
KCLA{(4) =50
KCLA(5)a5]
KCLA(6)=2208
KCLA(7)=209
KCLA(81=212
KCLA(9)=218
KCLA(10)=430
KCLA{11)=713
KCLB(l)=1
KCLB(2)=2
KCLB(3})=3
KCLB(4)=4
KCLB(S)=2
KCLB{6)=6
KCLB(T) =5
KCLB(8)=6
KCLB(9)=7
KCLB{(1l0)1=6
KCLB(11i=8
11=501
READ(S5'I1){ICD(M)eM=]l,450)
KODE(Ti=]}
[1=6282
WRITE(L?II3LICDIM) oM=]l950)
1TiB)=])
IEX=]
NV=0
ITi4)m]}
KODE(&) =0
1126191
WRITE(L*IT}{KODE{M}sM=T750+1140)
RETURN
END

182

*LIST

#ONE WORD INTEGERS

6C0

34

35

36
33
37
107

31
32
206
203
38

26
27

ALL

PROGRAM RST

SUBROUTINE RST

DIMENSION ICPT(9636)¢LO0OK(6)

DIMENSION ICA(2)9ICBL2)sICCL2)sNVA(2)9sNVBI2)sNVC(2)sIDAL2)s1IDB(2)
DIMENSION ISP(1)sNVAR{(5095)

COMMON KODE(2380) s IDAT(90s2)IT(10)

1T10JsL o1l sIDsIEIIFToKONSLNT sLPVINCPeNVoIEXIIGT oNMBoNAP

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(NVAR(191)sKODE(891))

(NPsKODE(4))

(NPPsKODE(5))

(NPVsKODE(6))

(ICARD +KODE(7))

(I1sP(1)sKODE(1141))

(LOOK(1)9KODE(513))e(IT1eIT(1))
(ITaoIT(4)) o ITBIT(B))s(ITH9IT(6))
(ICACLYoICPT(104)) o (ICB(L1)oICPT(165))9(ICCIL)oICPT(146

1)) e (NVA(L1)sNVAR(1s1)) s (NVB(1)sNVAR(1s4)) s (NVC(1)sNVAR(1s5))s(IDA(1
219 IDAT(1s1))o(IDB(L)»IDAT(192))

EQUIVALENCE

(ISPLsISP(1))s(ISP2+ISP(2))s(ISP5+ISP(5))e(ISP6sISP(6)

1) 9 (K7504KODE(T750)) 9 ({K1sKODECL1)) s (K29KODE(2))s(K39KODE(3))
GO TO(21910600050091)91IT4

NRI=NCP+1
ICRD=ICARD
I1=1

READ(3'IIVISFsIFReNCP

IFINCP)334+33934

READ(I'III((ICPT{JoK) 9K=146)9Js229NRI)
DO 36 K=24¢NR!I

DO 35 M=z1s3

IF(LOOK(M)=ICPT(KsM))37935436

CONTINUVE
IP =K

GO TO 107
CONTINUE
K=NRI+1
1P =zK=1
NMaNR I
NN=1P
NR=1IP

GO TO (38938931)s1EX

ISF=1

IF(IP =1=1T1)32+2034206

NMs1T1

GO TO 26
IP=1P+1
NN=1T1+2
NM=1P
NR=IT1

GO TO 26
NCP=NCP+1
DO 27 K=1s6

ICPT(IP ¢K)=LOOK(K)

I1=]

WRITE(3'II)ISFeIFReNCP

1136%NR =2

WRITE(3II)(LICPT(JoK) oK=196) e J=ENNsNM)

1T8=2
NM=1]
NN=TEX=1

183

GO TO{22:5065512)e1EX
500 1T4=]
NM=|,
511 GO TO (50665015509:501) oNM
501 GO TO (50295042506)eIEX
502 11=3421
WRITE(L'II)(KODE(K)oK=191140)0(IT(N)oN=1920)s(IT(M)IMn22+26)
503 lEX=2
504 ICARD=NM=1
505 NPV=0
GO To 21
506 11=1EX#1170+1081
READ(1'I1) (KODE(K)sK=191140)s(IT(N)IN=L1920)stIT(M) 9 Mn22426)
GO TO(50809507+5089501)9NM
507 GO TO (502+508B)9IEX
5080 GO TO(50895081)51CRD
508 WRITE(1,901)
901 FORMAT(1H)
5081 IT8=1
1E=]
NAP=0
GO TO(510018918)eNM
509 GO TO(50895064512) ¢1EX
512 WRITE(19902)
902 FORMAT(10XeB8HCONTINUE)
GO TO 506
510 GO TO (18+439)9NN
39 IT4=3
1 1l=]
READ(3'I1)ISFelFRINCP
1003 1Ip=}
IF(ISF11001+17+1001
1001 IF(NCP)120s1209s2
2 IF(IFR=29000})17+17+204
204 ll=4
READ(B'III({ICPT(JoK) sK=196) e Ja)loNCP)
NN=z=O
IFR=574
3 J=0
DO 7 K=1leNCP
IF (ICA(K)I=IFR)T7e1004
IF{J)69605
IF(ICALU)=ICALIK) YT 9696
JEK
CONTINUE
GO TO(B8s9)elIP
1124591
WRITE(L*II)(KODE(M)sM=191600)
IP=2
9 IPalCAtlJ)
NMa (CB{JI=]P
NRz2NM+ICC(J)
ICALJ)=]IFR
46 NRI=NR
IF(NRI=1600)48s48847
47 NRI=1600
48 I1=ip
READ(3911)(KODE(M) sM=leNRI)

~Now

[+ 4]

184

50

IP=11

I[I=1FR
WRITE(3*I1)(KODE(M)eM=1sNRI)
IFR=a [FR+NRI

NR=NR=NRI

IF{NR)50050946
ICB{J)=1CALJI+NM

- GO TO 11

10
11

120
121

13
14

17
170
18
190

22

201
21

2000
2001

2005
200

205

100
1002

110
1100
111
112
113
12

IFR=IFR+ICB(K)=ICA(K)+ICC({K)
NN=NN+1

IF(NN=NCP 1351219121

1IFR=574

15F=0

1l=]

GO TO (133l4),1P
WRITE(3'II)ISFpIFRINCP

GO TO 17
WRITE(3'II)ISFoIFRINCPe({ICPT(JoM) sMm196) 9J=19NCP)
11=459]

READ(1'11)(KODE(M) sM=131600)
GO TO{(201s170518918:201)01T4
l1E=]

IF({NMB=1)19092015190

{Ta=1

RETURN

NPVeQ

1CARD=1

1T4=]

NV=NPV

IF (NV) 20009200042005

GO TO (2001+2054205)¢1EX
IFT=0

ISP1=1145

15P2=604

I1SP5=0

1SP&=0

LNT=604

GO TO0(2055200)4178

1126191

READ(1'II){KODE(M) sM=T75041140)
17T8=1

iD=}

NAP=0

NPP=O

NP=Q

GO TO (1009110:12)91EX
WRITE(1:1002)

FORMAT(//2Xe 13HENTER PROGRAM)
GO TO 112

GO TO(1100s12+112) s ICARD
WRITE(1le111)
FORMAT(/10X 925HENTER PROGRAM=SUPPRESSED=)
DO 113 K=751¢840

KODE (K) =0

KON=0

K750=486

Kil=2562

K2=302

185

19
1900

191
1901

20

186

K32410

LPVe7

N=NV+1

DO 19 I=Ns30
KODE(14252)=0
NVAL(L1)=0
NVB(1)=0
NVC(1})=0

GO TO (1900+190141901)elEX
DO 191 1=2Ns90
IDA{1)=D
10B(1)=0

DO 20 I=31s50
NvC(T)=0
KODE(1+252)=0
NVB(])=a=]

L=7

NMB=0

[T6=]1

1E=0

RETURN

END

tLIST

tONE WORD INTEGERS

30
32
33
31

1001

7050
700
701

705
1000

800
706

707
708

820

ALL

PROGRAM NAM

SUBROUTINE NAM

DIMENSION NVAR{5095) oNVAL2)sNVB(2)

DIMENSION NTB(2)sKEEP(6)

DIMENSION KCH(2)s1CD(50) kTP (80)

DIMENSION LGO(2}

DIMENSION LOOK{1)

COMMON KODE(2380) s IDAT(9062)e1T(10)
110JelelloIDsIEIFTsKONSLNTILPVINCPINVIIEXeIGT oNMB sNAP

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

{NVAR(191)sKODE(891))
(NVA(L)sNVAR{194))9 (NVE(1)sNVAR(145))
{NTB{1)eKODE(T51))

(LGO(1)sKODE(T7961))

{ITLeIT(1)) e {NPVIKODEL(E))

{LGIKODE(T750})

(LOOK (1) sKODE(513)) o (KCH{L1) sKODE(511)) 9 {IF24KODE(51:

Xo (LOosKEEP(4)) s {LSsKEEP(5)) 9 (LO6IKEEP(6)) s (K4sKODE(L))9 (ITEIT(O) !
X{K1oKODE(1)) s(K2oKODE(2)) 9 (K3sKODE(3)) o (IT4oIT(4)) o ITBoIT(B))s
X{ICD(1)sKODE(841))

EQUIVALENCE
EQUIVALENCE
ICRD=1CARD
NP=K4

Ké4=0
MzLpPV+l

(ICARDsKODE(7))
(KTP(1)sKEEP(1))

IF(M=128)319304+30
[IF(LG=NMB)33,33432

LG=NMB
MaM=127

LGO(NMB)=128%#LGO(NMB)+M
GO T0(10019100191)+1EX
IF(NCP=95)149144914

Lal.PV+l
IFls]

IF(KCH(3)=2816)963+705047050
IF(IF2)705+7054700
IF(IF2/100=4)963+7014963
KODE(L)=28160+1F2

IF2=1F2=400
L=L+1
IFl=2

IF (NVA(IF21) 70547035705

703 WRITE (1+704)

704 FORMAT(66H THE VARIABLE CHOSEN FOR FUNCTIONAL RETURN APPEARS TO
1 UNDEFINED)

1F(L=252) 100051000910

KODE(L)=512
NSFz[T6=1

[F{NPV=NV)9707065970

‘N=1

IF(NV}I66036609707
DO 708 M=31lsNV

NVB (M) =0
MM=]

DO 91 M=T7sJ
KV=KCH{M)
K=2KV/100+1

GO TO (820+968:9683968:890) 9K
IF{KV=501821+83+968

187

821
823
824
86
87
88
89

83

890
891l

90
91
92

93
94
490
491
95
96

97
971

972

973

974

981
982
99

100
108
109
1090
660
658
659
661

664

188

IF{KV=43)8230869824
IF(KV=10)968¢919968
IF{KV=45)8T7:9187
IF{MM=1)968:89:968
IF((KV=41)/3=))968+884968
IF{MM=4)968,89¢9948
MMB K Veg]

GO TO 91

GO TO{92+968992+9689968) sMM
GO TO(96848913968s9689881) oMM
MM=4

KeKVY«400

IFINVB(K) 19689904968
NVB(K) =N

N=N+1

CONT INUE

GO TO 968

Ké4mN=]

MN=1

NNe=]

DO 109 M=ieNV
IFINVAIM))1005935100
IFINVB(M) 944944109

GO TO(491:490)e1F1
IF{M=1IF2)49191089491

GO TO(95+97) sNN
WRITE(1496)

FORMAT(38H #% THE FOLLOWING APPEAR UNDEFINED ##)
NN=2

IF(MN=119T725972+571
KTP{MN)=ICD(4T)

MN=MN+1

DO 98 MM=1,43
JKENVAR(MeMM) /2586
KJENVAR{MIMM) =256 % JK
IF(JK=10)1973+9819973
KTRP{MNI=ICDtJUK+1)

MN=MN+]
IF(KJ=10197499815974
KTPIMN)=ICDIKJ+1)

MN=MN+]
IF{MN=T74)1085982,4982
WRITE(1699){KTP(MM) sMM=1 s MN)
FORMAT(8X s80A1)

MN=1

GO TO 108
IF(NVB{M))10801085109

NVB (M} =N

NN+l

CONTINVE
IF{MN=11660:660+1090
WRITE(1699){KTP (MM} oMM=]1 s MN}
GO TO(659:658)s1F1
IFt{K4=NVB{IF2)1)16%99:9689968
IFINVA(30))1664:664366]
NVB{ 30} =N

Ne=N+1

DO 670 M=31¢50

665
670
671

6710

6711
6712
6713
6715
6716
6714
672
673
679
674

6740
6741

675
680
681
682

10

11
13

14

16
17

170

IFINVAIM) 167106714665
NVB(M} =N

N=N+1

NVEN=]

N=8

1A=KODE(N) /512
IB=KODE(N)=512%1A
IF{(IA=9)6712+6711s6712
N=N+1B+1

GO TO 681
IF(1A=1)671406713+6714
GO TO(68036715)41F1
IF(N=L)6T71696809680
Kel=]

GO TO 675

J21B=400

IF (J) 6B0+6B0+672

Ka =49

IF (K) 67396734674
KODE(N)=KODE(N)}+NVB{(J)=J
IF(1A=4)68036799680
N=N+3

GO TO 680

MM=0
IF(K=LG)6T41+674006740
MM=127
K=LGO(K)=128#(LGO(K)/128)+MM
IF (K) 91199114675
KODE(N)=6388+K=N

N=N+1
IF{N=L)671046710+682
Kl=|

LL=(L+NV+1) /7241

Mz2%l =2

K2=M

N=L+1

DO 10 K=NM

KODE(K) =0

Nz2#KON+M

K3=N

IF(KON)Y13s1391l

CALL MOV (LLo1529KON)
MaN+4%¥NP
IFINP)16916914

CALL MOV ((N+2)/2+20602%NP)
DO 17 K=5¢7

KODE{K)=0

[Is2

READ(3'II)IFR

L4=IFR

1I=IFR

IF{IFR+M+ 2%¥NMB+NSF=3072111705170913
WRITE(3'I]I)(KODE(K)sKz1leM)
IFR=IFR+M

DO 4 K=1s3
KEEPIK)=LOOK {K)

K1=NMB

N=NMB+1

189

18

102
103

104

970
963
968
914
913
911
910

190

DO 18 KslsNMB

KODE (K+1)=NTB(K)
NaN+]1
KODE(N)=.GO(K) /128
[FNa(IEX=1}%#1140
{1a1+IFN

M= 2 #NMB+2

NaNSF+M=1
IF(N=1140)10341034910
READ(L'II)(KODE(K) sK=MoN)
L6=N

L5%1FR

Ii=1FR

IFRuJFR+N
IF(IFR=30720)1049104+913
WRITE(3'II)(KODE(K)eK=1eN}
IT4=3

DO 85 K=146
LOOK (K)=KEEP(K)

[1=2

WRITE(3']II)IFR
ICARD=CRD

RETURN

1E=7

IE=IE+42

[E=1E+7

IEs]E+1

IEmIE+2

IEmlE+1

IE=IE+10

RETURN

END

PROGRAM EDT
#LIST ALL
#ONE WORD INTEGERS
SUBROUTINE EDT
DIMENSION KCH(1)sLGO(45)aNTB(45)eNTA(45)sLGAL4S)
COMMON KODE(2380)2IDAT(90s2)9IT(10)
1T0Jobl oIl IDelEsIFToKONSLNTsLPVINCPINVIIEXeIGT oNMBoNAP
EQUIVALENCE (KCH(1)sKODE(511})
EQUIVALENCE (NTA(1l)sKODE(T751))
EQUIVALENCE(LGA(L) oKODE(T796))
Jul
IP=il
NAP=0
Ii=1P
READ(3*ITINT
READ(3*II)INTBIK) eKmloNT) e {LGO(K) sKm]oNT)
CALL DATSW(7sISW)
GO TO (989101)s1I5SW
98 WRITE(3+100)(NTB(K)oLGO(K) oK=19NT)
100 FORMAT(215)
101 LM=)
1 NP=Q
ND=Q
LL=0
NN=1]
2 JmJel
IF(KCH(J)I=10)3+204
3 NPaNP#10+KCH(J)
NENE ST
IF(KCH{JI=10)341204
IFI(KCH{J)=45)9199945
IF(KCH(J)=46)91991446
IFIKCH{J)=501919s7 8
IFINP+ND! 13931913
IF(NP+MND) 1492014
JaJ+l
IF(KCH(J)=10)109125110
ND=10#KCH(J)
JaJ+1l
IFIKCHIJ)=10)11e129110
11 NDaND+KCH{J)
JeJ+1l
1FIKCHLJ)=10)9619129110
110 IF(KCH{J)=45)919911165
111 J=J+1
IF(RCH{) =10)91991110112
112 IF(KCH{J)=50)9199135111
12 NN=NN+1
13 NN=pNN+1
14 IF(NP=99)16216:961
16 NS=256%#NP+ND
IF{NS)9618961017
17 IF(NS=NTB{NT))18s18¢919
18 DO 19 K=1aNT
IF({NS=NTBIK) 124620819
19 CONTINUE
GO TO 919
20 IF(LGO(K))2321923
21 NTaNT=]
DO 22 M=sKeNT
LGO(MISLGOIM+L)

Vo-~30Um P

Py
[&]

191

22

23

24
25

26

27
28
29
30
31
32
200
201

202

901

33
34
961
954
919

192

NTB(M)=NTB(M+1)

GO TO 27
LGO(K) == . GOLK}

GO TO 27
IFINT=45)25:954,954
MeNT+1

DO 26 N=KaNT
LGO(M) = ,.GO(M=1)
NTB(M)=NTBIM=]1)

Mz Ma §

NTB(X)=NS

LGO(K) =0

NTaNT+1

LM=2

GO TO(1s31e28) sNN
JEJd+l
IF(KCH{J)=10)919:28429
IF(KCH{J)=456)91901930
IFIKCHEJSI=50)919931 928
GO TO{(919+32)sLM

IP=11

GO TO(20052004201)s1EX
[I=459]
WRITE(LI*ITI)(KODELK)oK=101140) ol ITIN)SN=1920)0{IT(M)sMn22026)
DO 202 K=1sNT
NTA(K)=NTB(K)
LGA(K)=LGO(K)

ITt2)1=1P

KODE(6)=0

IT(6)=1

1EX=3

IT(3})=0

NMB=0

WRITE(1901)
FORMAT(/10X +4HEDIT)

GO TO (33¢34})s1SW
WRITE(35100)(NTBIK)sLGO(K)aKa]lsNT)
RETURN

[E=7

[E=1E+35

[€=219

RETURN

END

#LIST

PROGRAM DLT
ALL

#*ONE WORD INTEGERS

205

100
101

102
103

104
105

106

109
110

112
113

115

owm P

60
61

64
65
66

SUBROUTINE DOLT

DIMENSION IOP(50+5)sIDT(90)91IDS(2)s1DL(2)
DIMENSION IDD(50)sICPT(9546)

COMMON KODE(2380) s IDAT(9042)91T(10)

EQUIVALENCE (JSsIT(O))a(JUNsIT(10))
EQUIVALENCE (LACHIDAT(90s1)) o (LToIDAT(90s21))
EQUIVALENCE (IDS{1)eIDAT(L1lol))o(IDL{1)sIDAT(L02))
EQUIVALENCE (NPVIKODE(6))
EQUIVALENCEL(KPSIT(T))

GO TO (2050206) sKP

IM=]

IP=}]

NNz277=1DD(1)

DO 1 K=1asNV

10P (K94)=sNN=1

DO 4 K=2y290
IFCIDODIK)I=268)100944101
IF(IDDI(KI=09393745,4101
M=IDD(K) /100
IF(M)93T7¢937+102

GO TO(103093749376115¢937) oM
GO TO(9379104) sNN

GO TO(105+106) 1P

1P=2

11=1

1C=KODE(ID+2)+ D=1
READ(3YII)ISFeIFRINCPe{{ICPT(JoM)oM=136)9sJ=1oNCP)
1Ix1C+4%(IDD(K)=101)

DO 110 J=1lsNCP

DO 109 M=143

Nzl1+M
IFI(KODEIN)=ICPT(JeM))1106109110
CONTINUVE

GO T0 112

CONTINUE

GO TO &

DO 113 M=1ls6

1CPT(JoM)=0

GO TO 4

Mz IDD(K)=400

1F({MIS3T79937s2

IOP{Ms&) =2=NN

M= 2

CONTINUE

GO TO (73¢6)slP

Jzl

DO &6 K=l sNCP
IF(ICPTIKe11)1930:66460
IF{J=K)619658932

DO 84 M=leé
ICPTIJeMI=ICPTIKeM)
ICPT(KeM)=0

JEJEL

CONTINUE

KeNCP

NCPs J=]

116JelolloIDsIEsIFToKONSLNToLPVINCPeNVILIEXSIGT sNMBoNAP
EQUIVALENCE (IOP(1+1)+KODE(B891)) o (IDDI1)sKODEI4EL))

193

{SF=}
Il=]
WRITE(3'II)ISFoIFRoNCPo{ (ICPT(JsM)oMRls6)sJm]eK)
1T{(4)=2
GO TO(900:¢74)9IM
T3 GO TO (937+74)¢1IM
206 DO 207 K=1eNV
207 10P(Ks4)=m]
74 1ValD+KODE(ID)=1
IFTelFT+1
CALL SHF (IFT»90)
DO 8 K=1sIFT
8 IDT(K)=0
J=l
DO 15 K=1lsNV
IFLIOP(K34)193091559
9 LL=IV+K
II=KODE (L)
IF{11)930+s1110
10 IDT(I1)=]
11 IFtJU=K)12+14+930
12 DO 13 M=145
13 IOP(JeM)IsIOP(KsM)
Il=1ved
KODE(11)=KODE(LL)
14 UmJ+l
15 CONTINUE
NPV =l
DO 150 M=1eNPV
150 I0P(Me4)=0
N=IV+J
DO 16 K=Js40
I0P(Jel)=0
KODE (N) =0
16 NeN+1
J=1
N=lv+]
[I=1V+NV
DO 24 K=loIFT
IF(IDT(K)I930s17419
17 IF(INS(KYII930424,418
18 CALL AJS (IDS(K)sIDL(K)0)
IF(IE)900+244+900
19 IDTtJU)=0
IF{J=K)1209239932
20 1DS(J)I=IDS(XK)
IDLJY=TIDLLIK)
DO 21 M=Nyll
IF(KODE(M)=K}12192242]
21 CONTINUE
[F{K=1FT1932923:932
22 KODE(M)=Y
23 J=J+l
26 CONTINUE
1T(4)=5
IFTeJ=]
DO 26 K=Js90
IDS(K)=0

194

26
28
937
932
930
900

IDL(K)=0
RETURN
1E=5
IE=1E+2
IE=I1E+30
RETURN
END

195

#L18T

#0ONE WORD INTEGERS

1900

2000

40
203

2030
2031
81
82
83

84

202

207
206
208

196

ALL

PROGRAM RDLL

SUBROUTINE RDLL

DIMENSION LGO(1)eNM{5)

DIMENSION KTM{149) sKCHIL1) sKWT(299)sNTB(L1) sNVA(2)aNVB(2IsNVC(2)
DIMENSION ICD(50)

DIMENSION NVAR(5045)

COMMON KODE (2380) ¢ IDAT(902)91IT(10)
110JoLslloIDsIELIFTIKONILNTsLPVINCPINVIIEXsIGT 9oNMBINAP

EQUIVALENCE

(KWT(1)oKODE(451)) s ({KCH(1)sKODE(457))

EQUIVALENCE(LGO(1) sKODE(T796))

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

(IB9ICD(11))

(IT3s1IT(3))

(NP9KODE(4))

{NPPsKODE(5))

(NPVsKODE(6))

(ICARD+KODE(7))

(NTB{1)sKODE(T751))

(ICD(1)9KODE(B41))

(NVAR(1e¢1l)9eKODE(891))

(ITLoITC1)) o lIT20IT(2))0l1TOIIT(E)) (ITCoIT(B)) Y

X(KWTL1oKWT (1)) o (KWT2oKWT(2))0 (KWT3oKWT(3)) o (KWTLoKWT(4)) s (KWTSsKWT

X(5))
EQUIVALENCE
1))
NX=1
NCX=1

(NVA(I)iNVAR(lol))o(NVB(I)oNVAR(lo&))o(NVCﬂl)QNVAR(105

KF=(lEX=1)%1140
GO TO (392)91ITC
IF (NAP} 1900420001900

1I=6591

WRITE(1*']1)(KODE(M)sMn45141140)

[1=6191

READ(1'11)(KODE{(M) sM=75091140)

ITC=1

GO TO(40+404850)s1CARD
IF{IE)I203+2024203

M=}

IF(LGO(NMB)=210)2031620312030

M=128

1T6e=1T6=LGO(NMB) /M

IE=0

GO TO 210
K=0

KeK+1

IF(KCHI{K)=10)85+82+83

DO B84 N=1:5

IF(KCHIK)=NM{N) 85984285

KK+l
IRELD!
NMB=0
ICARD=2
LPV=L

NPV =NV
NPP=NP
NMB=NMB+1

IF(NMB=65)2105207¢954%

GO TOl209:208¢210) ¢1EX

FORMAT(55H ONLY ONE MORE STATEMENT CAN BE ENTERED IN THIS PROGRAM)
GO TO(209s210) ¢ ICARD

209 WRITE(1+206)
210 IF(NV=NPV)2203+22032200
2200 MaNPV+1
DO 2201 N=MpNV
NVA(N) =0
NVB (N} =0
2201 NVCIN)=0
2203 NVaNPV
NP=NPP
GO TO(2205s91) s ICARD
2205 DO 2204 M=146
2204 KWT(M) =10
KWT3=45
GO TO (30403044301)91EX
304 NTB(NMB)=256%NMB
GO TO 3020
301 IF(1T3=NMB)3000+30209930
3000 IF(LGO(NMB))303,93002+302
302 11s172 |
M=LGO(NMB)
READ(IM'III(KTMIK) gKm] gM)
[T2=1T2+M
NX=2
GO TO 890
303 1T2=1T2=LGO(NMB)
3002 1T3=NMB
3020 NCD=NTB(NMB) /256
NCFaNTB(NMB)=256%NCD
GO TO %60
850 NM({1)=24
NM{2)=11
NM(3)=23
NM(4)=15
NM{5)1=10
85 NMB=NMB+1
IF(NMB=45)869869¢954
86 DO BT M=1s6
B7 KWT(M)=10
KWT3=45
KKe g
51 READ(2¢52INCDeNCFo(KTMIM) oMl o74)
52 FORMAT(I201X9[291XeT4A1l)
IF(NCD)930953e54
53 IF (NCF1930+62,54
62 IF(NCX=NTBI(NMB))960963+960
54 IF(NTB(NMB))930+55+957
55 NCX=NCD*256+NCF
NTB(NMB)sNCX
IFINMB=11)930:564550
550 IF(NCX=NTB(NMB=1)19584959,56
56 IF(NCD)930+5804560
560 MaNCD/10
IF{M)58458457
57 KWT1l=M
58 KWT2=NCD=10%M
580 IF(NCF)930+63¢59
59 M=NCF/10
NaNCF=10%M

197

IFINIF30961660
60 KWT5=N
61 KWT4H=M
63 GO TO(106099300630)+1ICARD
1060 CALL KYBRD(KWT(1))
KK=)
[F{KK=299)10615106241062
1062 IF{KWT(KK=1)=45)946510610946
630 JzT74
DO 64 M=1e74
IF(KTM{S)=IBI65:64065
64 JzJe]
65 MMM=J
Jal
11 DO 22 I=1+50
IFIKTMUU)=ICD(1))22012022
22 CONTINUE
GO TO 953
12 KK=KK+1
IF(KK=2297)171e1719946
171 XKWT{KK)=]=1
IF(1=46)13:10045107
100 IF({JU=MMM} 13425425
107 I1F(1=49)139953413
13 J=J+)
{F(J=MMM) 1151130
30 KK=kK+1
KWT(KK)=51
IF(KK=290)314314946
31 DO 609 MM=1,6
KK=KK+1
609 KWT{(KK)=10
GO TO 51
25 KK=KK+1
KWT({KK)=50
1061 KWT(KK+1)=10
Jul
DO 26 M=)leKKs2
KTM{J)I=KWT{M)%256+KWT (M+1)
26 J=J+l
M= Jau]
LGO(NMB) =M
890 [I=IT&+KF
1T621T6+M
IF{1T6=1140)89128914+910
891 WRITE(L1'ITI(KTMIK) skK=] sM)
GO TO (896¢92) sNX
8986 GO TO (899689981) sICARD
91 M={GO(NMB)
11=21T6+KF
[Té=1T6+M
READ(IFTI)IIKTMIK) sK=l9M)
92 Jel
DO 93 K=1eM
KWT(J)=KTM(K) /256
KWT{J+1)=KTMIK) =256%KWT{J)
e JmJ4a?
KKs J=]

198

899

94
95

96

97

98

960
959
958
957
954
953
946
930
910

900
901

J=2299

M=KK=§

DO 96 K=] oM
IF({KWT(KK)I=51)95494495
JaJ+b

KWT LI =2XKWT (KK
Jaj=]

KKeKK=]1

J=J+1
IF(J=81)946+946+97
Mz=81

DO 98 K=J»299
KWT (M) =KWT(K)
MzM+1
KODF(932)=298=
1=0

KODE(510) =0

Je=l

RETURN

IE=1

IE=1E+1

[E=lE+1

IE=1E+3

1Es1E+1

IE=1E+7
IE=1E+16
{E=1E+20
IE=1E+10

GO TO{(9019+9019900) s1CARD

ICARD=2
RETURN
END

199

PROGRAM SCA

#LIST ALL

#ONE WORD INTEGERS
SUBROUTINE SCALLR)
DIMENSION LOOKM{10}
DIMENSION NVAR{5045)010P {5603)sMFL(95:6)9KPG(4410)
DIMENSION I00P(56)sMF&(60)sMF5(60)sMFE(60)
DIMENSION KCH({1)¢LOOK{10)
DIMENSION KCM{1)eKCP(1)
COMMON KODE(2380)sIDAT(9092)9IT(10)
11oJeL ol oIDsIESIFTIKONSLNT9LPVINCPINVIIEXs1GToNMBINAP
EQUIVALENCE (NVAR{10l)eKODE(891})

EQUIVALENCE
EQUIVALENCE

(J00P{1)sKODE(4581)) 9 (MF4(1) gMFL(104))
(MFS L) sMFL15))0 IMFO(1) sMFL1196))

EQUIVALENCE(IT(1)oIT1)»(1T(2)91IT2)9(NPVIKODE(E))

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

{KCH({1)sKODE(S11))

(KCP (1) sKODE(512)) o {KCM(1) 9KODE(510)) » (KCHLsKCH(1))
(LOOK(1)+sKODE(T737))

(1129KODE(729))9 (IMeKODE(730))
(LVoKODE(7311)9(KVeKODE(732))
(KPVoKODE(733))9 (KZ+KODE(734))9 (K2sKODE(T735))
(K1sKODE(736))

(LOOKM(1) ¢KODE(736))
{ILMSKODE(932)) 9 ({IOF9KODE(933))

EQUIVALENCE (1OP1e10P(1491))e(NVARLINVAR(LI 1)) s(MFLLIIMFL(191))
EQUIVALENCE (ITT7oIT(7))elITGsIT4))
EQUIVALENCEL{ITOsITIO) o(ITI00IT(10))
EQUIVALENCE (NPsKODE(4))

EQUIVALENCE (KPG(1s1)sKODE(411))s(ICARDIKODE(T))
LR=1

11Z2=1

IM=}

1=s1+1

KV=KCH{TI}

IF (Kv=10) 297220015202
IF(KCP{1)=1012973201:2002
IF(KCP{1)=458)2019297+201
IF{KV=37120542979297

DO 206 N=1s6

LOOK{N}=10

LvV=0

LVaLV+]

IF{LYV=10)12070:2070s969

LOOK ({LV) =KV

I=1+1

KvsKCH(I)

IF(RV=37)2089209¢209
IF(KV=10)207+2099207

DO 210 M=1s3

NaM+M

LOOK (M) =258% O0KM{N}+LOOK{N)
KPVakKCMi J)

KZ=2KPV=999

IF (KZ) 2101210192100

K=l :

IFiILv=11903:2181s2102

GO T0O(2103:2104)e112

ii=1
READI(SITL)Y((IOP(MeN) eNe1s3) e IOQP (M) sM=1956)
11Z2=2

CALL SERCHIIOP1:56:56)

201
200

2001
2002
202
205
206

207

2070

208
209

210

2101
2100
2102
2103

2104
200

211
212

2121
2112
213

214
215
217
2171
2179

5012
5011
5010

501
502

504

503
506

507

508
505

509

300
221

3000

2190
2191

IF(L)930s2181s211

GO TO (2149211209190963s212)KZ

LR=3

IT10=0

1T9=L

IF (L=6)900092121+9000
1T9=39

GO TO 9000
IF(L=6)903+213+903
IT10==10

LR=3

GO TO 9000
IF(L=6)215+90342179

GO TO(219+22092190+220+217)sL

IF(KPV=T710)904+21719%04
KCM{J)=10

KCHES)I=I00P (L)

IF (KCH{J}=209) 29695019299
IF(KCH(1)=50)966+96655010
IF(KCH{1)=10)966+50109966
[=1+]
IF(KCHITII=49)16011950295012
KPV=J+1

Lvel

J=J+2

f=al+]

N=0

N=N+1

KlsKCHIL)

K2=KCP (1)
IF{K2=49)50345069503
1F{K1=49)507+50549507
K2=10

Lv=2

KCH{J)=K1#256+K2

J=J+l

GO TO(5089509)sLV

I=1+2
IF{1=ILMS)150495044946
NazN=1

I=]lw=])

KCHIKPV)=N

[=]+2

GO TO 200

IF (KCH1=1003) 2213219221
M=2139

N=.)

DO 3000 I=led
KCH{MI =K CHIN)

NeNe=l

MzMa]

=M+

10F=1

JEY

GO TO 9000

GO TO (2191+2209220)91EX
[T7=2

LR=7

201

RETURN
219 1EX=]
NPV=0
222 LR=2
RETURN
220 1T4=4
GO 70 222
2181 IF(KZ=5)2182+903+2182
2182 CALL SERCHINVAR19508NV)
IF{LY930,3025301
301 KCH({J)=400+L
GO TO(29999039919+3010)9K2
3010 IF(LV=11916+91693174
302 IF(LV=1)303+303:304
303 GO TO0{319+903¢9199616) K2
304 GO TO (305031053106310) K2
305 IF(NP)310+310+3051
3051 DO 307 L=1sNP
DO 306 N=z1s3
IF(LOOKIN)=KPG(NsLI 130793069307
306 CONTINUE
KCH{JY=100+L
GO TO 299
307 CONTINUE
310 GO TO{309+308)s1IM
309 1i=4
READIZII)ILIMFLILIM) sM=196)sL 21 sNCP)
IM=2
308 CALL SERCH({MFL1+954NCP)
IF(L)930+3189311
311 GO TO(312+314931693115)4K2
3115 GO TO(915+91593173)91EX
312 GO TO(3122¢312293121)91EX
3121 IF(L=IT1)3122931993122
3122 IF(NP=1013120+9449944
3120 NP=aNP+1
DO 313 N=19#3
313 KPG{NaNP)=LOOKI(N}
KCH{J)=100+NP
GO TO 299
314 LR=3
ITiO=MF&(L)
ITO=MF&4 L}
GO TO 315
316 LR=LR+4
1T1=L
315 {1=MFS{L)
GO TO 9000
318 GO TO(319:950695093173)sK2
3173 KCH{J)=0
3174 J=J+l
DO 3172 N=led
KCHIJY=LOOKIN}
3172 Jedsl
KCHIJI =210
GO TO 299
319 1F{NV=29)319069405940
3190 NvsNV+1

202

320

297

298
299

969
966
9613
950
944
940
930
919
918
916
915
904
903

321
9000

DO 320 N=1:23
NVAR{NVsN)=LOOK (NI
KCHLJ) =NV+400

GO TO 299

KCH{J) =KV :
IFIRV=50)298+300298
I=1+1

JeJ+l

GO TO 200

1E=3

IEnlE+3

1€E=1E+13

1E=JE+6

l1E«lE+4

IE=[E+10
IE=1E+11

1€E=]E+]

1Ex]E+2

1E=1E+1

1EslE+11

IE=1E+]

I1E=1E+3

LR=3

LRsLR+13

RETURN

END

203

#LIST

PROGRAM SCB
ALL

#ONE WORD INTEGERS

19
100
1001
1002

1003
1004

1005
1006

601
603

204

SUBROUTINE SCB(LR)

DIMENSION ISK({(6)sISKK(?)

DIMENSION IPT(10)

DIMENSION KCLAT1)sKCLBI(1)Y

DIMENSION NTBI{1)

DIMENSION DATAI(1)

DIMENSION NVA(1)sNVBI(1)

DIMENSION KSP(1)sKSM{1)sKSP2(1) oKCP(1)sKCP2(1)
DIMENSION KCH{1)9 KSG(1)s NVAR(505)

DIMENSION LRPT(15)

COMMON KODE(2380)sIDAT(9092)sIT(10)
1T0Jsl el loIDsIEQIFTIKONSLNTSLPVINCPOINVeIEXIIGTINMBNAP
EQUIVALENCE (NVAR(191)9sKODE(8911)}

EQUIVALENCE (KCH(1)9KODE(511))

EQUIVALENCE (KSG{1l)oKODE(4S61})

EQUIVALENCE (LRPT(1)eKODE(4&1))
EQUIVALENCE{(XNXsDATA{572))

EQUIVALENCE (DATA(1)sKODE(2))

EQUIVALENCE (NTB(1)9KODE(751))9 (ICARDSKODE(7))
EQUIVALENCE (IPT(1)sKODE(451))

EQUIVALENCE (IELsIPT(L))s{IARSIPT(2)}s{IFLSIPTI(3))
EQUIVALENCE (KPNsIPTU4))o(LLsIPT(B5))9 lIRPTHIPTIG))
EQUIVALENCE (IDFoIPT(7))e(1CCoIPTI(8))

EQUIVALENCE (ILXsIPT(9))s{ITHNIIPT(10)}

EQUIVALENCE (NVA{1)eNVAR(194))sINVBL{1)sNVAR(195))
EQUIVALENCE (ISKK(2)s15K(1}))
EQUIVALENCE(KODE(922) o I1S5KK{1)}

EQUIVALENCE (KSP(1l)sKODE(462))9{KSM(1)sKODE(460))
1(KCP (1) sKODE(512))9 (KCP2(1)sKODE(513))s(KSP2{1)9sKODE(463))
EQUIVALENCE (KODE(930)sIFX s {KODE(931)s1FPC)
EQUIVALENCE (KODE(932)sLETF) s (KODE(933),4I0F)
EQUIVALENCE (KCLA(L1)sKODE(9T72)) 2 IKCLEB(1)oKODE(1022))
EQUIVALENCE (FRCesKODE(936) o (MIKODE(932) s (NIKODE(984))
LIKVIKODE(985))9 IKSMJIKODE(986)) s (KZsKCDE(98T7)) o (NPHIKODE(S88))
2{KQKODE(989)) s {(MMyKODE11034))9 {KPVIKODEL1035))9 {JSVIKODE(1038))
3{KSsKODE(1037)) s (NDesKODE(1028))

EQUIVALENCE (ITT7+IT(7))

{7T7=1

LR=]

DO 19 M=1,10

1SKK(M}=0

IPT(M)=Q

IF(J=49=1}110011946:946

KVeKCH(L)

IF (Kv=43) 1006100201006

KSMJeKSM{ J)

IF (KSMJ/100=1) 1004+100551003

IF (KSMJ=223) 100435100591004

KSMJI=KSM{ J=1)

IF {{KSMJ=202)/3=1) 1006510051006

IFX=al

LX=1

DO 601 N=1s11

IF (KV=KCLA(N}) 603:6035601

CONT INUE

GO TO 930

KQeKCLBIN)

IF (KQ=5) 6055605:604

604
605
1008

11009
223

10
17
12
13
15
14
224
225
226
227
228
229
2291

2292
230

231

{=1+1

GO TO (2239187:180519051008+1369132+800) sKQ
K2=KCP(1)+2

DO 1009 M=14K2
KSG{JI=KCH(T)

JzJ+l

{21+l

GO TO 100

IF (KSM{J)=212) 224919224
NP=0

KQ=sKCHML{ 1)

ND=0

IF (IDF) 242918
NP=10%#NP+KQ

[=1+1

KQ=KCH (1)

IF (KQ=9) 29294

IF (KQ=45) 84548

I=1+1

KQ=kKCH{T)

IF (KQ=9) 69648

ND=10%#KQ

1=l+]

KQeKCH{ T}

IF (KQ=9) 74¢748

ND=ND+KQ

1sl+l

IF (KCH{1)=9) 961196148
IF(NP=99)104109961

GO TO(15e17912)s]1EX

GO TO(15+12)91CARD
NPe256#NP+ND

DO 13 M=1s45

IF(NP=NTB{M) 13914513
CONTINUE

GO TO 911
IF(ND)911s169911

M=NP

KSG(J)=4494M

GO TO 239

XNX=0,

1F (IDF) 225922549228
XNX=XNX#10s+XKCH{T)

{nlel

IF (KCH{11=9) 22592259226
IF (KCH{1)=45)2314227+231
1DF=1

[=1+l

FRC=41

IF (KCH{I1)=9) 230923092291
IF (KCH{1)=45) 2311+2292423)
1F (KCP{1)=50)91792319917
XNX=XNX+FRC¥KCH{I)
FRC=FRC/10.

I=1+1

GO TO 229

DO 2339 M=1177+1190

IF {XNX=DATA(M}) 23399233392339

205

2333 KSGlJ)=M=T791
GO TO 239
2339 CONTINUE
N=152
iF {KON) 23792379234
234 DO 236 M=1s3KON
IF{XNX=DATA(N) 23692384236
236 N=N+]
237 KON=KON+1
IF(KON=541237023703933
2370 CALL MOV (N9572s1)
238 KSG(J)=N+149
239 1DF=0
GO TO 166
800 MM=KV=700
BO1l GO TOl400+4029449945033300706970697109712+904082058209820) oMM
820 IF (10F) 93099629821
821 10F=0
KSGlJ)2MM+194
GO TO 4005
706 KSG{J)m215=24MM
709 KSP{J)=400
GO TO 401
710 KS5GtJ) =258
KSP{J)=388
GO TO 401
712 KPVsKSM(J})
IF (KPV=243171597149713
713 IF (KPVw2691715+7144715
714 KSG(J) =400
GO TO 166
718 KSGlJ)=23]
166 J=J+l
GO TO 100
400 IAR=]
1CC=0
KSGi{J)=222
4005 KSP(JI=265
401 J=J+2
GO TO 100
402 JSV=J
IFL=]lFL+]
JrJ+l
KS8G{J) =265
GO TO 4005
450 Kv=242
4501 IF {ISKILL)) 4502990204503
4503 Lis=s{l=2
KSGlJ) =266
LWL
iFLelFL=1
GO TO 4501
4502 Li=LL+l
IsSKiLL) =]
404 1F (10F) 930940624508
6062 KSG{J) =266
Jej+l
10F=}

206

4508 IF (1AR) 40604060405
449 Lis=LL+]
1SK{LL)=a=]
IF (KSM{J)=268) 4492449194492
449] J= J=]
4492 IF ((KSG{JEV}I=207)1/6=1) 9024144900902
4490 Kv=241]
405 KSG(J) =266
J=J+l
1AR=0
406 IF (ILX=4) 40600406894060
4060 KSGlJ) =266
J=J+l
GO TO (4061+87994061)91LX
4061 KSGlJ)=268
JrJ+l
KSG(J)uKy
4068 IF (NV) 9300406704063
4063 DO 4066 N=lsNV
IF (ILX=4) 4064440659930
4064 IF (NVBIN)) 4065+406694066
4065 NVB(N)=al
4066 CONTINUE
4067 GO TO (4005990298 789193)01LX
132 IF (1IFL)S02+45902+133
133 KSG(JSV)=KY
KSGlJ)Y=266
JaJj+l
KSGlJ) =262
GO TO 4005
136 KSGtJ) =KV
MaKVv=400
IF (M)} 166916691779
1779 IFINVA{M)+NVB({M))1782+17814166
1781 IF (KSMIJ)Y=204) 1780s1900+1780
1900 NVB(M)=l
NVA (M) =]
GO TO 166
1780 NVB{M)==2
GO TO 166
1782 NVA(M)=0
GO TO 166
330 IF({J=1)96293314962
331 IRPT=2
112401
READ(SITIILLRPT(J)eJ=1e15)
J2l5
M=230
60 TO 1900
180 KS=KVe=354
GO TO (788+18891688s181918891729183+184918591735+87099629962)9KS
870 IF (ISKILL)) 87499020872
872 Li={L=2
ILXe2
GO TO 404
874 ILX=3
KV=242
L=l L]
207

GO TO 404
878 JaJ+l
879 IFL=IFL=1
IF (Kv=50}1187+193,1187
1187 IF (KCP{1)=47) 1188218751188
1188 KV=4b
GO TO 180
788 IF (RCP{l)=37) 188,789,188
789 KSGlJI=258
i=]+l
GO TO 88
181 IF (KSM{J)=266) 182+188+1811
1811 IF (KSM{J)=268) 18891825188
182 KSGtJ)=25]
GO TO 88
184 IF (IFX) 9309184351841
18641 IFPC=IFPC=1
IF {IFPC) 9620184251843
1842 1FX=0
1843 KPNeKPN=1
188 KSGlJ)aKv+222
88 JmJ+l
187 I=1+1
GO 70 100
183 IF {1FX) 9309183221831
1831 IFPC=l1FPC+]
1832 KPNsKPN+l
GO TO 188
188 IF {(KCP{1)=0) 186s1869187
186 IDF=1
GO TO 187
172 DO 178 N=1lsNV
IE(NVBINY 172191785178
1721 NVA{N}=1
GO TO 188
178 CONTINUE
GO TO 188
1735 1F (IRPT=1)1T76s174s1738
1736 IRPT=]
GO TO 4490
174 DO 175 Ms1leNV
IF{NVB(IM) 17441755175
1744 NVB{M)=l
175 CONTINUE
IF (IAR) 179417945176
176 1CC=ICC+]
1F {1CC=3)1188¢177s188
177 1AR=Q
i€C=0
1770 KSGl.J) =286
NENES]
1794 IF {I0F) 93017852188
1785 IF (IFX} 930+1786s188
1786 10F=]
GO TO 1770
190 IF (KPN} 90521926905
192 ILX=4
GO TO 404

208

193
194

195
196
197

198
1985
202
203
962
961
946
937
933
930
917
911
905
904
902

204
205

IF LIFL) 9309196¢194
DO 195 M=lsIFL
KSG{J)m266

Js e+l

IF (IRPT) 19841989197
KSG(J)=268

KSPlJ)=212

KSP2(J)=355

KSP2(J+1) =266

JeJ+h

KSG(J)=99

IF (KS5G(1)=276)202+2034205
IF (KSG(1)=275320592039205
GO TO(204+9379937)+1EX
IE=]

[EalE+1S

IE=]E+9

IE=lE+4

[E=1E+3

[E=]JE+13

IE=IE+6

l1E=2]E+6

IEslE+]

IE=]E+2

[Em[E+2

LR=LR+1

LR=LR+1

RETURN

END

209

PROGRAM STK

#LIST ALL
#ONE WORD INTEGERS

5020
5021
5030

10

201

699
700

701
702

704

705
706

2001

755

7561

757

2002

SUBROUTINE STK

DIMENSION KCOPR(3)

DIMENSION NVAR(50065})

DIMENSION KOP(1}

DIMENSION LGOI(1)

DIMENSION KPL{100)sKSG{1)eLIM(100)

COMMON KODE(2380)»IDAT(9032)91T(10)s .
110Jola Il IDsIEIFToKONSLNTsLPVINCPINVIIEXe1GTaNMBINAP
EQUIVALENCE (KSG(1)sKODE(461))
EQUIVALENCE {LIM{1)sKODE(451))
EQUIVALENCE (KOP(1)+sKODE(551))s(LGsKODE(T501))
EQUIVALENCE (LGOI(1)sKODEL{796))
EQUIVALENCE (NVAR(191)eKODE(891)) s (NPVsKODE(S))
EQUIVALENCE (NUFIKODE(923))9({IFAsKODE(924))s (IPFeKODE(925))
EQUIVALENCE (KVeKODE(926)) ¢ (NUSKODE(927))
CALL DATSW{6sMZ)

GO TO {502095030) ¢MZ _
WRITE(195021)(KSGI{MM) pMM=] 9 J)

FORMAT {2014}

CONT INUE

Jzl

KCOP(1)=241

KCOP{21=242

KCOPl3i=284

KT=0

{EB=0

L=0

K=0

MM= 1

IF (KT=268) 2002969992002

IFM=1

KQ=KPL{K)

IF (KQ=110) 200152001+701

IF (KQ=220) 70697069702

DO 704 N=133

IF (KQ=KCOPI{N)} TO4s 7069704

CONTINUE

1F IKQ=268) 70567060705

IF (1EB) 930990192001

IF LIEBY 930020019921

GO TO (2002822517561)91FM

IFM=3

KKX=LIMIL)

IfF {KKX=272) 757¢70Qe757

IEB=EB=]

K=K+l

KPLIK)}sKKX

Lal =}

GO TO (216%5:3033+3052821902235700)sIXK
KTsKSGLJ)

GO TO 333

2011 IK=JB

C

210

1
202
203

204

2 VARs 2= BIN OPs 3= FUNCTIONe 4= SUBSCRIPT s 5= (s 68}
GO TO {203:211221102085218621992235906)31i1K

KzK+1

KPLIK)=KSGLJ)

KTaKSG(J+1)

MM=2

T=

E

2041

205

206

208
2085

209
2091

2092

210
2100

2101

2102

211
2110
601

602

2111
213
216

2165
217
788
800
801

8010
802
803
804
805
806

GO TO 333

[K=JB

GO TO t2059205520602069205820602069906) 91K
KSG{JI=259

IK=3

G0 TO 211

JuJ+l

GO TO 202

K220

K=K+l

KPLIK)I=271+K2

IF (KSG(J+11=265) 2091921049209
IF (IK=4) 2091420922091
Lal+l

LIM{L)=270+K2

JaJ+l

GO TO 201

KeK+1

KPLIK)2zKSGlJ+1)

JeJ+l

K=K+1

KPLIK)=2T70+K2

GO TO 204

IF (K2) 2101+2100452101

L=l+]

LIM{L)=271

GO TO 2102

LIMIL+1)=265

LIMIL+2)=2704K2

L=L+2

RE WY

GO TO 201
IF{KSG(J)=209)2111060142110
IF (KSG(J)=26812111+303342111
MzKSG(J+1)+2

DO 602 N=1M

KaK+1

KPL(K)=KSG(J)

JrJel

KaK+1

KPLIK}I=210

GO TO 201

IF (L) 90892184213

IF (IK=2)19094+2189217

IXK=1

GO TO 755

IF (L) 90892189217

CONTINUE

IF (KSGlJ)=269) 80093059800
IF (KSGlJ)Y=264) 801+80392173
IF (LIMIL)=2T70) 2172021698010
IF (LIM(L)=272) 217398029962
IF (LIM(L=1)=2651216921739216
IF (LIMIL)I=270) B8040216+962
IF (LIM{L)=265) 96298059962
IF {L=1) 218121819806

MMzl =]

DO 808 KKu}] oMM

211

807
8072
8071

808

809
2173
2174
2175
2176
2177
1217
1218
1219

218
2181

3002
3001
301
3011
302

303
3030
3031
3032

3033
3034

305
3050
3051

3052
2184

2185
219
220

2201

2202
221
222

223
224

225
2251

212

NNz =KK
IF (LIM(INN)}=2651807+808+8071

IF (LIMINN}=239)/2=1) 962+8094962

IF(KSG(J)I=268)962421859962

IF (LIMINN)=272) 962080720962
CONTINUE

IF (KSG(J}=264) 21819218192185
IFIKSG J)I=258)21772174+2177
IF(KSGl)=LIMIL)121819218192175
IF(LIMIL)=2511217642181,4218
IFILIMILI=249)216921810216
IFIKSG J)=LIMIL)I121792169216
IF (LIM(IL)=262)12185121991218
IF (LIMIL)=26012184+1219s218

IF (KSG{J)+l=LIM(L)) 21892165218
CONT INUE

Lel+}

LIM(L)YaK8G(J)

IF (KSG(J)=205)3011+30293002

IF (KSG(J)=207130293024+3001

IF (KSG(J}=222130193029301

IF (KSG({J)1=223) 301119302¢3011
IF (KSG(J)=196) 302430292185
K2=2

1EB=IEB+]

GO TO 2085

IF (LIM(L)=271) 30319962:3030
IF (LIMIL=1)=2865) 30324218593032
IF (LIM{L}=265) 30329303493032
IXK=2

GO TO 755

IF (L) 908921849303

IF (L=1) 2185421854806

IF (LIMIL)=271) 3050921859962

IF (LIMIL)Y=265) 3051199624962
IXK=3

GO TO 755

IF (L) 9083962305

KzK+1

KPL{K) =268

JeJ+l

GO TO 201

IF (L) 90899086220

IF (LiIM{L)=268) 222522142201
IF (LIM(L)=271) 222220249222
KaK+1

KPLIK) =270

Lel=]

GO TO 204

IXK=4

GO TO 755 _

[F (L) 908:225¢22%

IXK=5

GO TO 755

[FM=2

GO TO 700

KK+l

KPL(K)=99

32
34
35
33

964
962
946
930
921
909
908
906
901

KveK
1=KV

CALL DATSW(69MZ)

GO TO (5594561)MZ
WRITE(14560) (KPL(M)oM=r]eKV)
FORMAT (2015}

CONT INUE
GO TO 914
JB=0

IF(KT=300)1921421
IF(KT=265)292562
IF{KT=26613026+3
IF(KT=99)442734
IF (KT=243)5024:5%
IF (KT=258)220606
IF{KT=300)23928+28

JB=JB+1
JB=JB<+}
JB=JB+]
4Bz JB+]
JB=JB+1
JBzJUB+1
JB=JB+1
JB=xJB+1

GO TO (201192041) oMM
IF(K=100)30030+946
[F(KPL(1)=263)40940441
[IF(KPL(1)=209)42941942
IF(KPL(1)=200)419964+964
DO 31 N=1,100

KOP(N) =200

DO 36 N=1,4KV

LIMIN) sKPL(N)

M= PV+l

IF(M=128)33+32932
IF(LG=NMB)35935934

LG=NMB
M=M=127

LGO(NMB)=128%LGO(NMB)+M

L.=0

J=1

NUF =1}
[FA=0
IPF=]
Kvsl
NU=430
RETURN
1E=2
IE=lE+16
IE=IE+16
IE=]E+9
IE=IE+12
IE=lE+]
1E=1E+2
lIE=1E+5
1E=IE+]
RETURN
END

213

PROGRAM CDR

#L.IST ALL
#ONE WORD INTEGERS

SUBROUTINE CDR
DIMENSION KOP11)2KPLI1IsKOAIL1)eLGOL1)

DIMENSION NVARIS5065)

DIMENSION KPP{1):KPLMI{1)oKPLM2{1]1oKPLM3{1)sKPLMG(1)sKOAM(L) +sKOPM{
11)eNVTLYL)

DIMENSION LLSV{1)

COMMON KODE(2380)sIDAT(90+2)»1IT{1013s
118l oIloIDelESIFToKONILNTILPVINCPoNVeIEXIIGTsNMBsNAP
EQUIVALENCE (LLSVI1IaNVAR(3195))s(LGIKODELT50))
EQUIVALENCE (KPL(1)sKODE(451))

EQUIVALENCE (NPVsKODE(S&))

EQUIVALENCE (NVAR({1sl)+KODE(B91})

EQUIVALENCE (LGO(1):KODE(T796})

EQUIVALENCE (KOP(I"KODE(551))0(KOA(1)’KODE(651’)

EQUIVALENCE (KPP(1)osKODE(452))s(KPLM1(1)9oKODE(450)) e (KPLM2(1)
1KODE(#49))9‘KPLM3(1)OKODE(448’)0(KPLM4(1)OKODE(447),0
2(KOAM(1)9KODE(6503)o!KOPM(l)gKODE(SSO))p(NVT(l).NVAR(BloA))

EQUIVALENCE (KPL2#KODE(452))

EQUIVALENCE (NUFsKODE(923))s(1FAIKODE(924)) s (1PFyKODE(925))

EQUIVALENCE (KVsKODE(926)) 9 {NUSKODE(927))

EQUIVALENCE (KODE(928) sKT) s (KODE(929) 9JX) s (KODE(930)sKU)»
1{KODE{931)9sK2) s (KODE(932)sM) s (KODE(933) sK) s {IKODE(1934) 1K)
Z(KODE(93530MM)i(KODE(936)OMZ)o(KODE(937)oNQ)Q(KODE(938)oJV)o
3(KODE(939) sKK)

241 L=lL+]
2418 1IF (L=100) 2416+9469946
2416 KT=KPL(J)
JX=1
IF (KT=270)1923924
1 KUs({KT/100)+]
GO TO (2632450911)sKU
11 IF {KT=268) 2927492
2 IF (KT=264)302543
3 IF {KT=258)492192]
4 IF (KT=222145040045
45 IF (KT=209) 46366345
46 IF (KT=205) 2283319331
663 KOP(LI=KT

KOA(L)=2kKPPLJ)

K2=KOA({L}

JaJj+l

DO 6&4 M=1sKZ

Lal+l

JaJ+l

664 KOA(LI=KPL{J)

Jej+l

K=Ki+3

GO 7O 250

g IF {KT=223) 22:4501422
25 JA=mJSX+]
24 JXsJSX4]
23 JYaJX+1
22 JXeJX+1
21 M=}

KAX2258

KQ=0

GO TO (242:753:805:258:5253)9JX

242 [F1J=2)1962:962:2420

214

2420
2421

2424
253

2531
2532
2533
2538

813

814
2536

810
2534

2800
2801

154
756

753
2425

520
243
244

245
246

248
249
2490
2491

2492

250

251

2537

IF (KPLM2(J)=270) 2424024212424
Ja =2

GO TO 259

M=z2

Kz J=M

Mzl =]

IF (KOP(M)=254)253492532+25%34
IF (KOA(M)=KPL(K)}125344253342534
IF (KOA(M)=431)81042538+2538
GO TO (8140813))NUF

NUzNU=}

NUF=1

Lsl=2

KQ=}

L=l+]

GO TO (2425+2537125909109262)9JX
KOP(L)=sKXX

KOA(L)Y=KPLIK)

KSV=KXX

KQ=1

IF(KXX=255)754+2800»911
IF{KOA(L)=43]1)2536+280192801
KOP(L)=256

GO TO 25136

IF ((KXX=239)/2=1) 75695049756
Kel

GO TO 489

KXX=KPL(J)

GO TO 253

Ke2

KOP(L)=KPL(J)

KOA{L)=KPLM1(J)

Kli=l

IF (KOAM{L)=43]1) 24442439243
KIl=zKil+1

IF (KOA(L)=431)24602459245
K1l=zKlI+l

Lal+1

NUF=1

IF (KIl=2) 249192499248
NUsNU=1

IF {NU=430)2491+249142490

IF (KOPM(L)=255) 24919249202492
NUsNU+1

NUF =2

KOP(L)=2564

KOA(L)=NU

Mz J=K

KPL{M)=NU

Mz Jé]

DO 251 1=MeKVY

IKai=K

KPLUIKIsKPLIT)

KVakV=K

JeJ=K+]

GO TO 241

K=l

KSv=KPL(J)

215

489
490

4901

4900
4902
4903

4906
4907

4904
4905
491
500
504

5055

508
5080

5081
509
5091
5092
805
806
807
258
259
2599

2590
2591

216

KOP{L)=KSV

KOA(L)=0

1F (KSV=21215096490+500
CONT INUE

KOP(L)=212

K=KOA{L)=449

M=0

IF tKY4901949014502

KelLPV

M2

KOP{L)=2585

KOA(L)=430

IRT=2

GO TO 8659

L=alL+l

KOP{L})=212

GO TO 491
IFI{K=NMB)490354903,4904
MM=0

IF(K=LG)4907¢490694906
MM=127
K=2LGO{K)=128#(LGOL(K)/128)+MM
GO TO 4905

Ke0
IFIK+IEX/2=1)91105100491
KOA(L)=244+K+Me=(L+LPV)

GO TO 510

IF {{KSV=207)/6=1) 50945089509
MZ=LLSV(IFA)

1FA=zlFA=]

IF (IFA) 9126505595055
KOA{MZ)=L+486={KSV+MZ)
KOP{L)=212

KOA(L) =244

IF (K&V=242) 508:5081:508
IF{KV=8G)5080:5080:946
{FA=]FA+]

LLSVIIFA) =L

K=.)

GOTO 250

IF (KOP({L)=204) 510950914520
MM=KOAL{L)=400

DO 5092 Kmlse3

L=l+1

KOA{L)=aNVAR(MMsK)

GO TO 510

IF {J=5) 80698069259

IF (KPL2=271)125968079259

IF (KPP{J)=251) 25932599258
JeJd+l

GO TO 2415

KOP({L)1=255

NQ=0

IF (KPLM2(J)=2T71) 2590425912590
IF (KPLM3({J)1=271) 92325929923
K=3+NQ

KOAIL Y =KPLM3(.J)

GC TO 781

2592 K=4+NQ
KOA(L)=aKPLM4(J)
L=L+]
KOA(L)=KPLM2(J)
IF (KOA(L)}=430) 781l+7815780
780 NU=NU=]
781 Lsi+l
KOAL{L)=KPLML{J)
IF (KOA(L)=430) 783¢7835782
782 NU=NU=1}
783 IF (NQ) 2594978302594
7830 Lsi+l
NUF =1
NU=NU+1
GO TO 2492
2594 J=J+2
G0 TO 250
262 JVmy=2
IF {(JV) 962+96292620
2620 IF (KPLIJVI=2T70) 962429002621
2621 1F (KPL{JV) =430) 28092809962
280 KOP{L)=254
KOA{L)=sKPLM2(J)
K=3
GO TO 250
510 K=2
GO TO 250
290 IF (KQ) 29019290192%02
2901 KOP(L}=255
KOALL)=KPLMY(J)
Lat+l
2902 KOP{L)=284
NQ=3
JrJ=2
GO TO 2599
400 JX=2
GO TO 4501
331 JX=4
GO TO 4501
450 JX=3
KT=202
4501 DO 460 K=230
Mz J=K
IF (KPL{M}=273) 460+4510459
451 KOP(L)=KT
GO TO (4511945119451094511)eJX
4510 KOA(L)=KPL{J)
Lel+l
4511 IK=K=2
IF {IK) 45153453204515
4515 DO 453 N=lelK
MzM+]
KOA(L)=KPLI{M)
334 IF (KOA(L}=430) 45344530452
452 NU=NU=1
453 L=l+l
GO TO (4531945310249194533)0JX

4531 IF (JX+1=1K) 453002491+4530 217

4530
4533

4532
459
4591
458

460
263
659
660
661
662
274
273
275

2751

276

277

278

279
288

281
282
284
287
2631

5560

218

GO TO (96%8924) 9JX

Kek+]l

Lel=]

GO TO 250

GO TO (9629962924919962)0JX
GO TO (460046004591 0460) 2JX
IF (KPL(M)=400)458+4604460
KOP(L}=25%

KOA(L)=KPL{M)

L=l+1

NUaNU+1

KOP(L)=254

KOA (L} =aNU

KPL{M)=NU

Lel+l

CONTINUE

GO TO 921

IRT=1

IF (IRT=IFA) 66006609662
DO 661 MM=IRTsIFA

MZ={ LSV{IMM]}
KOA(MZ)=l +244=M2

1FA=]

GO TO (27394900)9IRT
IRT=2

MXT=0

Lal=}

KeJ

MXT=0

IF (L=1PF) 2879275192751
DO 278 KK=lPFL
KOK=XOA(KK)

IF ((KOK=412)/19=1) 2782769278
KOK=KOK=430

NVT{(KOK)=1

IF (KOK=MXT) 27802789277
MXT=aKOK

CONT INUE

IF {(MXT=1) 28742799288
KOP({L+1)=2257

GO TO 281

Lel+l

KOP{L)=257
KOA(L)=sMXT+430

L=l+]

KOA(L)=431

IPF=slL+l

DO 284 Msm1eMXT

NVTi{M)I=]l

IPF=l+l

NU=430

GO TO {2631250)¢IRT
LSvV=l

L=LPV
{FILSVIO30:380:5560

DO 264 Jmlel S5V

Lel+]
[F{L=252)26402645909

264
380
923

965
962
946
924
921
912
911
909
910
930

KODE(L)={KOP(J})=200)%#512+K0A(J)

RETURN
1E=23
RETURN
l[E=3
IE=IE+16
1EnlE+22
1E=IE+3
IE=1E+9
IE=lE+l
1E=]1E+]
1Es1E+10
RETURN
1E=30
RETURN
END

219

KODE
KOp
KOA
KP

IE
GETOP

LOOP

MATCH

ZRO
ONE
oPT8

220

ENT
EQU

STO

STO

LDX

L3

GETOP
/TFFF
/T5FF
/15FE
/T5F9
/T5F5
/15F4
/75F0

ZRO
ONE
KODE

KOP
ZRO

KOA
43
oPT8

KOP
MATCH
=1
LOOP
1E» 20
GETOP
ZRO

ZRO

KP
GETOP

/0111
70220
/0370
/0430
/0540
/0640
/0940
/0C5¢4
/0D54
/0ES4
/0F 54
/1054
/1154
/1254
/71661
/1764
/1D62
/1E862
/1F862
72062
/2162
/2263
/2363

PROGRAM GETOP

RTN
JMP
PAUSE
SET
TYPE
PUNCH
TYPEOUT
GOTO
LT

GT

EQ

NE

GE

LT
ARRAY
SHIFT
MIN
MAX
INTERVALS
SUMF
LAST
LN
ATAN

GETO00010
GET00020
GETQ0030
GETO00040
GET00050
GET00060
GETQ0070
GET00080
GET00090
GET00100
GETOO0110
GETOO0l20
GETO00130
GETO00140
GETO00150
GETO00160
GET00170
GEToO0180
GET00190

GETO0210
GET00220
GETO00230
GETO00240
GETO00250
GET00260
GET00270
GET00280
GET00290
GETO00300
GETO00310
GETO00320
GET00330
GET00340
GET00350
GET00360
GET00370
GET00380
GET00390
GET00400
GETO00410
GET00420
GET00430
GETO00440
GETO00450
GET00460
GET00470
GET00480
GETO00490
GET00500
GETO00510
GET00520
GETQ0530
GET00540
GET00550
GET00560
GET00570
GET00580
GET00590
GET00600
GETO00610

/2463
/2563
/2663
/2763
/0780
/2F52
/3052
/3152
/3252
/3352
13956
/3851
/3A65
/3853
/3C53
/73D53
/3E53
/3F53
/3655
/3751

ABS
TANH
SUM
MAGNITUDE
TAB
SIN
cos
EXpP
SQRT
NEG

FREE
LOAD/FREE
"

GETO00820
GET0Q0630
GET00640
GET00650
GET00660
GET00670
GET00680
GET00690
GET00700
GETCO710

GET00740
GET00750
GET00760
GETO00770
GET00780
GET00790
GETO0720
GET00730
GET00800

221

#LIST

PROGRAM RTN
ALL

*ONE WORD INTEGERS

SUBROUTINE RTN(LR)

DIMENSION NTB(2)

DIMENSION TAA(2)sIAC(2)IDS(2)s1IDL{2)
DIMENSION ITACT(104¢5)

DIMENSION IBF(40)

COMMON KODE{(2380)s1DAT(90s2)51T(10)

100Jol ol IDSIESIFTaKONILNTsLPVINCPINVIIEXeIGT oNMB s NAP

EQUIVALENCE (JUSeIT(9))s(UNeIT(10})
EQUIVALENCE (IACT(1+1)+KODE(452)) 9 (TAALL)oIACT(1s1))

CLIAC(1)sIACT(142))

100
308

101

200

20
201

22

23
24
25
26

209
90

222

EQUIVALENCE (IDS{1)eIDAT{L1e1))slIDL{L1)eIDAT(102))
EQUIVALENCE (LACYIDATI(S90s1))s(LToIDAT(90s2))
EQUIVALENCE (KPoIT(T))
EgUIVALENCE (NTB(1)sKODE(T751)) s (ICARDSKODE(T7))
LR=1

GO TO(1s100s2)eKP
LE=IE

IE=Q
IF{1D=1)9399941:101
M=ID+KODE(1ID)
N=KODE(I1D+3)
IFIN)93002015200

DO 20 K=1sN

KODE (M) =0

MaM+]

JEKODE(ID+1)+ID=1
IF(M=1=J) 22990930
IFT=1FT+1

DO 28 K=MeJ

LA=KODE(K)
IF{LA)23+28+23
IF({IFT=LA)25425924
IFT=LA

CALL AJS({IDS(LA)SIDL(LA)»O)
IF{iE12090269209
KODE(K)=0

CONTINUE

IFT=1FT=1
LA=KODE{1D+5)
KODE(1D+5)=0
J2KODEL{ID+6)
KODE(ID+6)=0

M2KODE({ ID+4)

TAC(M)=m=] AC(M)
ID=TAA(LAY

I=21D+J
IF(LAC)O930913514

CALL AJS({LACsLTol)

GO TO(15617) sKP
IF{IE)307¢16+307
RETURN
IF(ID=1)939:18s1
1E=LE

GO TO 2

GO TO (41s307) +KP

GO TO (39:.307) sKP

GO TO (301:307)eKP
a2

39
301
307

29
290

80

81

82

820
821

30
845
3l
32

830
84

840
85

841
842

B413

IE=IE+9

l1E=1E+30

KP=2

LE=1E

IF (1D=1)2+2+308
IF{1E=29)80929+80
WRITE(16290)LNT

FORMAT (26H *# EXCEEDING DATA AREA =314¢19H WORDS AVAILABLE ##%)
GO YO 8130

[1=2600+]1E
READ(5¢11)1Bs1S

KnlS=1B

IF(K)1830+830481

11=18

READ(SIIT)I(IBF(M) oM=]9K)
WRITE(1+82)(IBF(M) sM=19eK)
FORMAT (4H #%438A2)
IF{1E=54)830¢8204830

GO TO (B459821+821)1EX
I1=1EX%1170+1081
READ(LI'IL) (KODE(K)oK=101140) o(IT{(N)oN=1s20)e(IT(M)sM=222926)
1T(8)=]

IF(NMB=1)32431,32

NPV=O

LR={ R+1

LR={ R+1

RETURN

GO TO(30+84)91CARD
MNTB(NMB) /256

Na=NTB{(NMB)=254#M

AA=M+ 014N

IF(AA)BL0 8419840
WRITE(1985)AA

FORMAT(22H #% STATEMENT NUMBER ¢F5¢203H ##)
GO TO 821
IF(NMB=1)842+840+842
M=sNTB(NMB=1)/256
NENTB{NMB=1)=256%#M
AABM+ 0 1%N
WRITE(1:843)AA

FORMAT (22 %% STATEMENT NUMBER sF54296H +1 ##)
60 TO 821

END

223

#LIST

PROGRAM IMP
ALL

#ONE WORD INTEGERS

G N o

~ O W

11
12
13

15

16
17

18

19
20

21

224

SUBROUTINE JMP

DIMENSION [ACT(10:5)1+ICPT(9536}
DIMENSION ICB(2)eICCL2)9IDLL2)2IDS(2)
COMMON KODE(2380)sIDAT(90+2)51T110} s
110l sl 9IDeIEsIFToKONSLNToLPVINCPINVIEXeIGT oNMBeNAP
EQUIVALENCE (JACT(121)eKODE(452)) sl JFoKODE(502)3e(ICB(1I9IACT!
Clel))olICCLLlYoIACT(Le2))

EQUIVALENCE (IDL{Y1)+IDAT{12))0(30S{1)sIDAT(1sl))
EQUIVALENCE (KOAsIT(2))

EQUIVALENCE (12+1718))
IF{KOA/100=11938¢1+938
1IFIKOA=100)9300930+2

GO TOl344)912

fII=6191
WRITE(LI*II)(KODE(K)oKeT5091140)

§2=2

IFINAPIS309508

IFINAP1I930¢549

IFINCP1I930995046

DO 7 K=45241140

KODE(K) =0

KODE(451) =1

JFE503

GO TO 9

126591

READ(1'IT)(KODE(K) sK=45191140)

1P ID+KODEL{ ID+2 | +4#K0A=405
IF(KODE(IP+4}) 12+13410

IREF=KODE({ IP+4)

DO 11 M=3,5

Nzl P+M=2
IF(KODEIN)=TACT{IREFeM)) 12011912
CONTINUE '

GO TO 26

KODE(IP+4)=0

IREF=0

IFINAPIO30s1 7814

DO 16 K=1510

DO 15 M=3,5

NelP+Me=2

IE(KODE(N)=TACT(KsM) 16915216
CONTINUE

[FLICCIK)} 250254948

CONTINUE

I1=4
READ(ZITII{LICPT{JsKIsK=1ls6) s JmlaNCP)
DO 20 K=)sNCP

DO 18 M=1s3

NzIP+M
IF{KODEINI=ICPT{KsM)}950+18520

CONT INVE

[1i=2iCPT(Ked)

ILP=ICPTIKeB =11 .
{IF(NAP=10)19:364+36
[E(JF+ILP=1141)21921936

CONTINUE

GO TO 950

DO 22 K=1sl0

22
23

24

25
26

260
27
28
29

30
31

33
34
35
350

351
352

36
37

38
39

40

401

IF(ICB(K) 122923422
CONTINUE

GO TO 930

DO 24 J=1e3

Nalp+J=2
IACT(KeJ)=KODE(N)
ICB(K) =JF

ICC{K) == P

NAP=NAP+1

NzJF+1LP=1
READ(3'IT)(KODE(M) ¢M=JF¢N)
KODE (JF+4 1=K
JFeJF+ILP

IREF =K

KODE(IP+4) 2K
IDC=ICB{IREF)
NPAR=KODE (IDC+3)

I=141

IFINPARIO4T 9260427
IF(KODE(1)/512)9429942435
JzI+NPAR=1

DO 28 K=leJ
IF(KODE(K)/512)9439284943
CONTINUE
IF(KODE(J+1)/512)9424942+29
IP=ID+KODE(ID})=401
MaIDC+KODE(IDC)

DO 34 K=lsJ
N=IP+KODE(K)
IF(KODE(N))930+304+33
IF(89=1FT)93149931431
IFT=21FT+1

KODE(N)=IFT

IDS{IFT)=0

IDLLIFT)I=O
KODE (M) =KODE(N)

M=M+]
IF{1D=113514350+351
KODE (1DC+5)=0

GO TO 352
KODE(I1DC+5)=KODE(1D+4)
KODE(IDC+6)=]+NPAR=1=1D
ICC({IREF)==]ICC(IREF)
10=1DC

I=ID+6

RETURN

DO 39 K=1910
IF(ICC(K))37439439
NAP=NAP=]

DO 38 M=1s5
TACT(KsM)=0

CONTINUE
IF(NAP=10)40¢951951
N=0

JFe503
IFINAPIS309499401
IRID=KODE(ID+4)
IRI=[=ID

225

226

41

42
43
44
45
46

47

48

4901

49
952
951
950
948
947
943
942
938
931
930

IRiP=IP=ID

420

DO 46 K=1e¢1l0
IF(ICBIK)}930s86e42
IF(ICB(K)=JF 146048343
IF(J)1930s4544
IF(ICBIK)=ICB(J)})I4553930046
J3K

CONTINUE
IF(J19309930947

K=J

CALL MOV ((JF+11/2(ICBI{KI+®L)/2s1CCIK)/2)
ICB(K)=JF
JFeJF+1CC LK)

N=N+1
IFi{N=NAP)4134901s930
1D=1CB(IRID)

I1=1D+IRI

IP=1D+IRIP
IF(JF+ILP=1141)219952+952
lE=1

IE=lE+1

IE=1E+3

IE=lE+]

[E={F+3

IE=IE+l

1ExlE+4

IE=1E+7

[E=T1E+]

[E=]1E+30

RETURN

END

#LIST

PROGRAM STV
ALL

#ONE WORD INTEGERS

72
%01
73

Té4

78

500
501
400

60

SUBROUTINE STV

DIMENSION ICB(50)0IDS(2)sIDL{2)sKCH(299)sDATA(2)sIKB(&)
DIMENSION KEP(2)

COMMON KODE(2380) ¢ IDAT(9042)91T(10)
110JoLol1oID0IELIFT oKONSLNToLPVINCPINVIIEXsIGT oNMBsNAP
EQUIVALENCE (KOPoITIY1))o(KOASIT(2))0 (JUSIITIO)) e lUNSITI(10))
EQUIVALENCE (KODE(2)sDATAC(L)) o (XNXsDATA(5T72))
EQUIVALENCE (IDS(1)eIDATCLlal))s(IDL(L)o]IDAT(102))
EQUIVALENCE(ICB(1) sKCH(90)) o (ISLHIICB(16))
EQUIVALENCE(KCP (1) sKCH(2))

EQUIVALENCE (KCH1sKCH(1})

NN=]

11=501

READ(S'ITI{ICB(K) sK=1550)
IF{KOA/100=4)93841+938
KesKODE(IDI+KOA+ID=401

LC=KODE (K}

IF(LC)S®30+204

IF(89=1FT)931+931,3

IFT=1FT+1

LC=1IFT

KODE(K)=LC

IT1=0

JN=IDLILC)

CALL DATSW(1%,JSW)

ICNT=219%#J8W=1139

N=31

DO 72 M=1,3

I=zlel

Kl=KODE(]) /256

K2=KODE{l)=256%K1

KCH{N=1)=1CB(K1+1)

KCH(N)=ICB(K2+1)

N=N+2

WRITE(1+901)(KCH{(M)sM=30435)

FORMAT(7TH ENTER #6Al)

GO TO (73e74)sJSW

112484

READ{(S'II)(ICB(K}sK=1916)

GO TO 75

IKB(1)=40

IKB(2) =45

IKB{3) =46

IKB(4)=15

M=0

GO T0 5

GO TO(59501) 9JSW

IF(LMN=ICNT)380+54380

PAUSE

1.SS=M

GO TO(60:61) s JSW

READI2sT) {KCHIMJ) e MJ=180)

FORMAT (BOAl}

LMN=80

DO 9 J=1,80

DO 8 K=1s16

IFIKCH(J)=ICB(K})B:80,8

CONTINUE

227

GO TO 380
80 KCH{J} K=l
IF{k=1619981380
81 LMN=J
IFIKCP{JI=15LH)380+904380
9 CONTINUE
GO TO 90
61 DO 62 MJ=lses
62 KCH{MJ}=10
CALL KYBRD{KCH1)
JrJ=]
IF{KCH({J)=45)3805604,380
604 | _MN=
KCH(J) =15
Kz Jal
IFIK11501566040
6040 DO 609 J=1lsK
MJ=0
KVeKCH(J)
[IFi{Kv=10)6094609¢605
605 IF(KV=51)606+608+380
606 DO 607 MJ=1lo4
IF{kV=IKB(MJ})607 66089607
607 CONTINVE
GO TO 380
608 KCH(J)=sMJ+10
609 CONTINUE
90 DO 11 J=loLMN
IF(KCH{JI=10)20011p12
11 CONTINUE
IF(LMN=ICNT)380¢55380
12 IF(KCH{J)I=15)20415+380
15 GO TO{1509150943) 9NN
150 IF(IGT)I1Te17el6
16 1=1GT
17 GO TO(171+170) oNN
170 CALL AJS{IDS(LC)oIDLILCI L)
171 CALL AJS(IDS(90)192IDL{(90)s]))
RETURN
380 1F{M)18s189381
381 GO TO(382+39)sJSW
382 M=L8S
J52IDS(LCI+M
18 WRITE(1:19)
19 FORMAT(23H ITLLEGAL INPUTs REENTER)
GO TO (40085)9JSW -
20 GO TO(200+210062100) sNN
200 CALL AJSUIDSILC) o IDLAILCY s UN+LNT)
IF(IE}O000216900
21 JS=1DS(LC)
JN=2IDL{LC)
NN=2
2100 XNX=0e0
KC=KCHI M)
MM=]
IF(KC=10124536:23
23 KCekKC=10
GO TO(230:269265380:43)sKC

228

230

24
241
240
242

250
26

260

2701
2702
27
28

29

290
291

36

379
3800
3807
3803
3801
3802
3810

3804
39

403
40

401
402
41

&3

50

MM=2

K=2

GO TO 241

XNX=XNX#10a+KC

K=]

JEJe]

KC=KCH(J)
IF(J=LMN)24092400379

GO TO(24202429260927) 6K
IF{KC=10)24+250425
IF(KC=12)2504264250

GO TO(29:380)sK

K=3

GO TO 241

FRC=e1

Keé

IF(J=2)2702+2702+2701
IF(KCH(J=2)=10)275270292702
IF(KC=10)2843804380
IFIKC=10)28529429
XNXaXNX+FRC*KC

FRC=FRC/10s

GO TO 241}

KCeK{=9

GO T0(290+380038092909500290) sKC
1Ti=1

K=l

G0 TO 3803

JuJ+l
IF(J=LMN)2100+2100:500

GO TO(3800+3280)sJSW

ITl=1

K=2

GO T0O(3802:3801)sMM
ANX==XNX

IF{M=UN)2810s4194]

CALL MOV (JS5957291)

JOS=JS+1

MzM+ 1

NN=3

GO TO(3804+%5) 3K

GO TO{(36993099309369930943)¢KC
K=JS=1

GO TO({403s401)ITl
WRITE(1:40)DATALK)
FORMAT{23M REENTER NUMBERS AFTER ¢Fl2e4)
GO TO 5

WRITE(1+402) DATA(K)
FORMAT(22H REENTER NUMBERS AFTER9E1546)
GO TO 5

CALL AJS (IDS(LC) oIDLILC)0)
NN=1

IF{IEI900:9296900

JN2 JN=M

CALL FRE

IDLILC) =M

RETURN

K=1

229

230

52
56
53
54

55
57
58

59
68
63

64

65
66

67
938
931
930
929
900

70

71

IMF=0

KC=}

Judel
IF({J=LMN}52+52+380
IF(KCHE{J)}=10)58954956
IFIKCH{J}=11)380+534380
K2

JeJel
IF{J=.MN)55+559380
IF(KCHIJI=10)5893804380
KCm2

IMFeIMF#10+KCH({J)

J=Jdel

IF(J=LMN)}59459964
IFIKCH{J)I=10168964+63
GO TO(57+380)9KC
KC=2KCH{J)=10

GO TO(38093809864¢380264)sKC
FRC= I MF

GO TO(66965) 3K

FRC==FRC
XNX=XNX%#10e*##FRC

1T1=2

KCaKCH{J) =9

IF(U=LMN) 2919291967

GO TO(3807+380)sJSW
IE=7

IE=lE+]

IE=IE+]

IEslE+29

GO TOUT71s70s70) eNN

N=lE

IE=Q

CALL AJS (IDSILC)IDLILC)0)
IE=N

RETURN

END

*L1ISTY

PROGRAM WRT
ALL

#ONE WORD INTEGERS

1000

418
100
101

1010
102

104
105

106
107

108

109
110

111
112
1120
113
114

115

116
117

1170

1171
1172
118
903

1180
904

SUBROUTINE WRT

DIMENSION DATA(2)

DIMENSION BF(240)

DIMENSION IBF(80)s1CR(50)
COMMON KODE{2380)sIDAT(S032)91T{10)
11000l 011 0IDsIESIFT oKONSLNT sLPVINCPINVIEXSIGT sNMBoNAP
EQUIVALENCE (KOPIT(1))s{KOASIT(2))
EQUIVALENCE (LACHIDAT(90s1))9(LTHIDAT{90+2))
EQUIVALENCE (KODE(2)sDATA(1))
EQUIVALENCE (IBF(2)e¢BFI(1))
CALL DATSW(0oJSW)

JE5= 24 JSW

CALL DATSW(1s1FC)

LD=7=KOP
IF(KOP=9)1000440041000

CALL DATSW(13s15W)

GO TO(121+418)91SW
IF(KOA)938+100s102
IF{LAC)9301930,101

LB=90

GO 70 110

KOAsKODE (1)

LB=KOA/100

GO TO(938+9384+104,108),5L8
IF{KOA=386)106+105:105
LB2KOA+791

GO TO 107

LB (KODE(ID+1)+1D+2%#K0A=601)/2
LC=]

GO 70 111
LBR=ID+KODE(ID)+KOA=401
LB=KODE(LB)

IF(LB)930+9224109
IF(IDAT(LB91))930+922+110
LC=IDAT(LBs2)

LBsIDAT(LBs1l)

GO TO (122+¢112)91FC

N=240

IF(LC=NI113,114s114

N=L.C

DO 117 M=1eN
IF(DATA(LB))11581169116
BF(M)I=DATA(LB)=a00005

GO TO 117
BF({M)=sDATA(LB)+,00005

LB=.B+1

M=0

MM=M+ 1

MaML 24 D+4
IF({M=N)1172:117261171

M=N

GO 70{1180:118) LD
WRITE(Je903) (BFIK) sK=MMeM)
FORMAT(B{ 1M eF12e8))

GO TO 1182
WRITE(Je904) {BF{K) sK=MMaM)
FORMAT(6(1H sF12e84))
WRITE{(26904) (BF({K) sKzMMeM)

231

1182

1183
120

1200
1201

122
1223
1224
1225
1226

905

1228
1229

1227
121
124
125
126
127

400
401

4010

402

403

404

406

4060

4061
407
908

4070
408
409
410
412

232

CALL DATSW{13s18W)

GO TO(121:1183),18W
IF{M=N}1170:120120
LC=LC=N
1F{LC)12112161200

GO TO{11201201) LD

CALL DATSW(13,15W)

GO TO(12191120)1SW

Nz2%{ D+3
IFILC=N)12245122591225
N=LC

MeLB+N=1

WRITE(Je905) {DATA(K) sK=LB M)
FORMAT(1H 97E1546)

GO TO (122891229} elD
WRITE (2+905) (DATA(K) sK=LBsM)
CALL DATSW{13,1IS8W)

GO TO(121¢1227)61SHW

LC={ C=N

LBsM+]

IFLLC)I1214+12001223
IF{1D=119305124+125
[FiL=[)1930¢1269125
IF(KODE(1+1)/512)1269127s126
RETURN

Isl+l

GO TO(121+1010)915W
IF{KOA)Y9554955,401

CALL DATSW({13,K)

GO TO(411004010) 4K

1I=501

READ(S!'IT)I(ICR(K) 9K=1450)
N=Q

DO 410 K=1sKOA

I+l

LC=]

M=KODE(1) /256
IF(M=50)403,9660:406

N=N+1

IBFI(NI=ICR{M+1)

.C=2

M=KODE(1)=256%M
IF{M=50)40999660406
IFIN}930,40604407
WRITE(Je4061)

FORMAT{1H)

GO TO 408

WRITEL{Js908) (IBF(LD)sL.D=1sN)
FORMAT ({80Al}

CALL DATSW{13.:LD}

GO TO{40T71:4070)LD

N=0

GO TO{4040410)eLC

NeN+]

IBF(NI=ICRIM+1)

CONT I NUE

IF{NI®30s411e412
WRITE(J2908) (IBF(LD)oLD=19eN)}

RETURN
4110 1=1+KOA
411 RETURN
4071 I=l+KOA=K
RETURN
966 1E=1)
955 1E=fE+17
938 IE=]E+8
930 [E=lE+S8
922 lE={E+22
RETURN
END

233

PROGRAM LSG

*#LIST ALL
#ONE WORD INTEGERS

(e XaNaXaXaXakaXa)

1

C

234

[+ Y] P W= X

WS NG po

167
168
680

169

40

[V

501
502

503
504

602
603

604
605
606
607

608

SUBROUTINE LSG(KD})

DIMENSION DATA(2)¢1DS{2)eIDLI2)slARI4G)
COMMON KODE{2380)sIDAT(90+2)s1T{10})¢
11oJoL o110 IDsIEQIFToKONSLNT oLPVINCPoNVeIEXsIGT oNMBoNAP
EQUIVALENCE (KOPsITU1))slKOASIT(2))e(KPeIT(T))
EQUIVALENCE (LACSIDAT(90e1))e(LToIDATLO042})
EQUIVALENCE (KODE(2)sDATAL(L))

EQUIVALENCE (TASKODE(L1143))9(1BeKODE(L1144))
EQUIVALENCE (IGelAR(1))s{IHsIAR(2))s(ICoeIAR(3))o(IKelARIG))
EQUIVALENCE (IDS(1)sIDAT(191))e(IDL(1)oIDAT(1s2))
EQUIVALENCE (NPV:KODE(6))

VALUES

LOADsLOAD/FREE TEMPORARY

SINe COSe EXPs SQRTs NEG

%3/ 0+0=0+

GO TOs LTe GTo» EQe NE» LEe GE = INITIALLY
STORE = AFTER OPERAND CLASSIFIED

STORE = INITIALLY

FREE TEMPORARY

KO=1]

iC=0

L=}

GO TO{400s19409120040040) oKP
IF{KOA)93892040

IF{LACYO306930+3

LD=90

LA=]

GO TO 8143

GO TO (16881699930) oLl

GO T0(92301680) LA

16=LD

IH=LC

Li=LL+l

[=1+1

KOA=KODE(1)
LOCATE OPERAND

LAZKOA/100=2

IF(LA}938+938s4

GO TO (556)e LA

[{Fi{kpP=515019928+928

IF{KOA=386)150345029502

LBeKOA+T79]

GO TO 504

LB=(KODE{ ID+11+1D+2#KOA=601)/2

LC=}

GO TO 13

IFiKOA=40019389602»608

GO TO(L603:938993289604) oKP

TAR{LL+1)slHe=]

GO TO 1631

GO TO{938:605:605) sLL

IF{IHI930907:606

IF{IDSIIHI 19306907607

TARILL+1Y=IDLIIH)=]

GO TO 1631

LB=KODE(IDI+1D+KOA=401

LD=KODE(LB)

IFIRP=5)601:163046080

601
7
813

1610

1611
13

IF(LD)930:92297
IF{IDS(LD)}1930:922:813
LB=IDS(LD)

LC=1DL LD}
IF{KOP=56)1341610+13
CALL AJS{LACsLT»0)

CALL SHF{(904LD}
IF(IE}4501611045

RETURN

GO TO(1619169504+161) eKP

C MULTIPLE INSTRUCTION LOAD OR STORE

181
162
163

1631
1630

6080
164
165
166
170

6085

6082

6086

6083

6084

171
172

173
174

176
16

160
1601
1602
1603

17

C
50

51

5¢
55
56
57

GO TO (1640162416862} sLL
IF{LC=1)9309163+923
IAR(LL+1)8DATA(LB)Y+a5
IF(IAR(LL+1))9239163151631
GO TO(93891649170) sLL

KP=g4

LC=LD

LD=_B

IF{ID=11930s165s166
IF(L=1)93001700166
IF(KODE(I+1)/512)1709167s170
GO TO(17199209920972992096085) sKP
GO TO (608656082)sLL

LD=1G

DO 6084 K=LBsLD

LC=KODE(K)

IF (LC) 9303608446083

CALL AJS(IDS(LC)oIDLILC) 90)
IF (1E) 450608445
CONTINUE

RETURN

GO TO (169172+172) sll
LD=1G
IF(TARILL*1)=IH)1T391734923
GO TO(930s1769174) oL L
LC2IK=IC+]
1F(LC1930s923516

LC=]

LOAD

CALL AJS (LACsLT#LC)
IFLIFE) 454160045

GO TO(16016160201602)sLL
GO TO(160361602)sLA
LB=I1DS{LD)

GO TO(17:140e58)sKP
LBsLB+1IC

CALL MOV {(LACeLBsLC}
RETURN
#p/ove=ot

M=0

[FIkOP=63)516710s51
LE=KOP=58

IF(LT=LC) 5555455
IF{LC=11926961960
{F(LC=1)926361956
IF(L.T=11927+570927

CALL MOV (5T72eLACs1)

235

58
59
60
61
64
65
66
67
68
69
70

71

s

GO TO 16

Ne AC+LT=1

DO 59 K=LACsN

CALL MOV {Kps572s1}

M=}

NaLAC+LT=1

GO TO(64066068970) oLLE

DO 65 K=LACseN
DATA(X)=DATA{K)I®DATA{LB)
LBz B+M

RETURN

DO 67 K=LACHN
DATA(K)=DATA(K) /DATA(LB)
LB=| B+M

RETURN

DO 69 K=LACsN
DATALK)I=DATA{(K)+DATALLB)
LB=B+M

RETURN

DO 71 K=LACHN
DATA(K)=DATA(KI=DATAL(LB])
L.B=L B+M

RETURN

710 1A=0

711

713
714

712

¢ S

72
73

74
77

75
76

I8=0

CALL AJS (IAeIBeLT+LC)
IF{IE)456711945

CALL MOV (IAWLACHLT)
GO TO(T714e713)eLA
LB=iDS(LD)

CALL MOV (IA+LTsLBLC)
CALL AJS (LAC»LT»0)
IF(IE)459712045
LAC=1A

LT=18

RETURN

TORE

GO TO (T4sT3e73)elL
LC=IH

LB=1G

N=1

IF(LC)I930675477
IFLIDSILC) 930578479
IF(89=1FT 19319931576
IFTe[FT+1l
KODE(LB)=IFT

LC={FT

N=2

GO TO(B0»B6+88) sl.L
IF{1D=1)939981+82
IF(L=1)939+87482
LO=KODE(I+1}) /512
IF(LD=55)8387+89
IF(1.D=54)830089+830
IF{LD=40)831+87084
IF(LD=23)832987+84
1IF(LD=22)833s87489

833
834
835
84
86
87

IF(LD=12)834989+89
IF(LD~4)835,87¢84
IF(LD=2)89987+87
IF(KODE(I+]1)=512#1.D)89+89,87
IF(LT=1)926,8804923

CALL SHF (90sLC)

RETURN

C STORE BY SUBSCRIPT

88
885
8800
8801

8802

8803
880
881

882
883

884

89

90

C
120

1201
1202

121
122
123
124
125
126
127

44
1270
1271

128

129
C

IF{1K=1C)92398854885
IF(LT=IK+IC~1)88003880¢927
{F(LT=1)927,88016927

CALL MOV (5729LACel)

CALL AJS (LACHLTsIK=IC+]1)
IF(IEY4548802045

MaLAC+LT=1

DO 8803 K=LACM

CALL MOV (Ke57291)
IF(IDL(LC)=TAR(LL+1)=1)881+90»90
1A=0

[8=0

CALL AJS({IAsIBeIAR{LL+1)+1)
IF{IE)452882045

GO TO(883+884)¢N

CALL MOV (IAsIDS(LC)eIDL(LCY)
CALL AJS (IDS(LC) oIDL(LC)0)
IF{IE)454884945

IDS(LCI=TA

IDL(LC)=]B

GO TO 90

1C=0

CALL AJS (IDSILC) oIDLILCYOLT)
IF{IE)45990445

CALL MOV (IDS(LCI+ICsLACHLT)
RETURN

GO TOs LTs GTs EQs NEs LEs GE

KOAzKDA=244
IF(KOP=12)9204127+1201
KOP=zKQP=12
IF(LT=1)925941202+925
A=1,0

GO TO (121812291230124+1250126) 9KOP

As=A
IF(ADATA(LAC)) 12891289129
IF (DATA(LAC)) 12891294128
IF (DATA(LAC)) 129491289129
Az=A
IF(A*DATALLAC))I129+1299128
CALL DATSW(1l4ek)

GO TO (4401270) 9K

NPV=0

KO=3

RETURN
IF(KOA)1271912991271

IGT=1]

KO=2

Iz]+KOA=]

RETURN

SINs COSs EXPs SQRTe» NEG

237

238

140

141
142
143
144
145
146
147
148
149
150

939
938
931
930
928
927
926
925
923
922
920
907

45

KOPaKOP=46

NsLAC+LT=]

GO TO (1410143914501470149)9KOP
DO 142 KsLACSN
DATA(KI=ZSIN(DATA(LB}Y)
1.B=| B+1

RETURN

DO 144 K=LACHN
DATA(K)=COS(DATA(LB))
LBs{ B+l

RETURN

DO 146 KaLACHN
DATA(K)=EXP{DATA(LB))
LBsLB+1

RETURN

DO 148 Ks={ACoN
DATA(K)=SQRT(DATA(LB))
LBsi B+l

RETURN

DO 150 K={LACN
DATA(K)==DATA(LB)

LBe B+l

RETURN

1€s]

l1E=1E+7

1Es1E+]

IE=]1E+2

IE=fE+]

1E=lE+]

IE=1E+]

IE=TE+2

1E21E+1

IE=1E+2

IE=lE+]13

1E=1E+7

KO=4

RETURN

END

#L18T

#ONE WORD INTEGERS

NONON D
WS WN e R

1000

11
12

13
1300
130
131
1301
1310
1311
C LN
132

133

ALL

PROGRAM TRG

SUBROUTINE TRG

DIMENSION DATA{2)sIDS(2)sIDL(2)

DIMENSION TAR(2)sAR(3)

COMMON KODE (2380} o IDAT(S092)91T(10)5s
110JoLoTIoIDsIEsIFTIKONSLNTsLPVINCPONVOIEXsIGT sNMBsNAP

EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE

VALUES

ARRAY

(KOP2IT(1))o(KOASIT(2))s(KPsIT(7))
(LACsIDAT(9091)) o {LT9IDAT(90s2))

(KODE(2) 9DATA(L1)) o L IA9KODE(1143)) o (IBoKODE(1144))
(IDS(1) e IDAT{1e1)) s (IDL(1)sIDAT(192)}))

(IGPTAR(L)) o (IHOIAR(2)) o (ICHIAR(3)) s (IKsJAR(4))
(JSeIT(9))a(UNWIT(20))

{IAR(2) sAR(1))9 (AsAR(1)) s (ABsAR(2)) 9 (ACIAR(3))

MINSMAX s INT 9 SUMF s LAST
LNsARCTANsABS s TANH9SUMeMAGNI TUDE

SHIFT
*%

LL=1

CALL DATSW(3+1D0D)
IFIKOA)938s193
IF(LAC) 93099302

LD=90
LA=]

GO TO(938912512+9389938) oKP

LA=KOA/100=2

IF{LA) 938493844
GO TO (5910} 9LA
GO TOl696s6950196) 2KP
GO TO(69945) oL L.
IF(KOA=386)89T97

M=KOA+T791
GO 70 9

M= (1D+KODE(ID+1)+2#K0A=601)/2

LC=1
GO 10 13

LB=1D+KODE(ID)+KOA=401

LDO=KODE(LB)

IF(LD) 9304922411
IF(IDS(LD) 19304922412

M=1DS(LD)
LC=IDL(LD)

GO TO(200929613091300670) oKP
GO TO(455130)sLL

CALL AJS (LACsLTeLC)
IF{IE)900+s131900

GO TO(131091301)sLA

M=1DS(LD)
KPaKP=2

GO TO(1311s51)eKP

KeKOP=33
N=LAC+LT=1

GO TO(13291401691892002101) ¢K

DO 133 K=LACeN
DATA(K)=ALOGIDATA(M))

MaM+]
RETURN

239

C ARCTAN
14 DO 15 KslLACsN
DATAIK)sATANI(DATA(M))
15 M=2M+1
RETURN
C ABS
16 DO 17 K=LACeN
DATA(K)=ABS{DATAIM))
17 M=M+]
RETURN
C TANH
18 DO 19 KslLACsN
DATA(K)=TANH({DATA(M))
19 M=aM+1
RETURN
C SUM
20 CALL MOV (LACsMel)
LLaLAC+]
MzM4]
DO 21 K=LLsN
DATA(K)=DATA(K=1)+DATA (M)
21 MaM+l
RETURN
C MAGNITUDE
210 DO 211 K={LAC»N
Az0,4342945%AL0OGIDATA(M))
IF(A)1212+2134213
212 LL=A~]
GO TO 214
213 LL=A
214 A=l
DATA(K)=10e0%%A
211 M=M+1
RETURN
29 K=KOP=28
GO TO(30+31936438936) 9K
¢ MIN
30 Az=],0
GO TO 32
C MAX
3] A=1,0
32 CALL MOV (572sMsl)
N=M+t C=1
DO 34 K=MsN
C IF(A%(DATA(K)=DATA(572)))34834933
33 CALL MOV (572eKsl)
34 CONTINUE
CALL AJS (LACeLTl)
IF{IE) 900354900
35 CALL MOV (LACs5T72¢1)
RETURN
C INTERVALSsLAST
36 CALL A4S {(LACHLTs 1)
IF (1E) 900337:900
37 DATA(LAC)=L.C=]
RETURN
€ SUMF
38 CALL MOV (572sMsl)

240

39

40
41

42

IF{LC=11930541939

N=M+1

LisM+Ce=]

DO 40 K=NsLL
DATA(572)=DATA(572)14+DATA(K)
CALL AJS (LACHLTel)
IF(IE)900+424900

CALL MOV (LACsS572+1)

RETURN

C SHIFT

45
46
47

48
49

50
500
901

51

52

53
54

55
56
57
58
59

60

61

62

63

64

65

66

IF(LC=1)9300469965
IF(DATA(M))4 7448448
NM=DATA(M)=06e5

GO TO 49
NMeDATA(M}+065

LL=2

I=1+1
KOP=KODE(]} /512
KOA=KODE(I)=512%KOP
GO TO (50+500)91DD
WRITE(39901)1sKOPsKOA
IF{KOP)Y930+34943
FORMAT(315)

N=}

IFINM}S52:66053
NM==NM

N2
IF(NM=LC)55+661954
NM2NM=| C

GO TO 53
IF{NMI930+66356

GO TO(57+58) N
IF(NM=LC/2160359¢59
IF{NM=LC/72)60060459
NM=z{ C=NM

N=x3=N

[A=0

18=0

CALL AJS (T1AsIBeNM)
IF(IE)Q00:619900
M=IDS(LD)

GO TO(62:64) 5N

CALL MOV (TAsM+LC=NMoNM)
LL=M+{ CuNM=]

N2 AC+LT=]

DO 63 K=29lT

CALL MOV (NsbLLsl)
NzNe]

LL=t.L=1

CALL MOV {LACeIAsNM)
GO TO 65

CALL MOV {(1AeMsNM)
CALL MOV {LACsM+NMsLC=NM])
CALL MOV (LAC+LT=NMs]AINM)
CALL AJS (1As1Bs0)
RETURN

CALL MOV {(LACsMslC)
RETURN

241

C ARRAY

200
201

202

203
204

2040

205

2050

242

206

207

*#
70

T4
75
76
717

781
182
78

79
80
81

620
621

622
623
624

625
83

965
945
943
938
9230

IF{LC=11924+62019924
IAR(2#LL=1) 2KODE(24M=]}
TAR(2#LL)Y=KODE(2%M)
GO TO(20282020205) sl
LL=LL+1

[=1+1

KOP=KQDE(I)/512
KOA=2KODE(I}=512#KOP
GO TO(2034204)4+1DD
WRITE(3:901)1+sKOPsKOA
IF(KOP)9264020400¢924
IF(KODE(I)=KODE(I=1}139201+3
IF(AC)9243205002050
LC=AC+165

CALL AJS {(LACeLTsLC)
IF{1E)900:2064+900

AC= (AB=A) /(L T=]1)
AB=0.0

N=LAC+LT=1

DO 207 K=LACsN
DATA(K)=AB*AC+A
AB=AR+140

RETURN

LB=M

M=0

IFILT=LC)I 75874975
IF(LC=11926+481+80
IFILC=11926481476
IF(LT=1)92777+927
CALL MOVI(BT72+LACel)
CALL AJS(LACsLTsLC)
IF(IE)900+7814900

GO TO(789782)sLA
LB=IDS(LD)

N2LAC+LT=1

DO 79 K=LACsN

CALL MOVI(K95T72s1})

M=1

N=LAC+L T=1

DO 83 K=LACHN
IF(DATA(K))62066259625
IF(DATA(LB) 162196224622
1A2DATA(LB)=s5

GO TO 623
1A2DATA(LB)+45
IF(IA=DATA(LB) 162556244625
DATA(K)=DATA(K)#%IA

GO TO 83
DATA(K)=DATAIK) #%#DATA(LB)
LB= Be+M

RETURN

IE=20

IE=1E+2

IE=TE+S

IE=1E+8

jE=1E+3

927
926
924
922
920
900

l[E=lE+]1
lIE=TE+2
IE=1E+2
IE=1E+2
IE=1E+20
RETURN
END

243

#LIST

PROGRAM TAB
ALL

#ONE WORD INTEGERS

418

1000
100
101

1182
1183
1184
1100
1010

102

104
105

106
107

108

109
110

111
121
124
125
1280
127

128

301
302

244

SUBROUTINE TAB
DIMENSION DATA(2}
DIMENSION IBF(105)
DIMENSION IDS{2)sIDL(2)

DIMENSION IRN(29)91Z{11)sICRU11L)eICBI2)oIVLIB)oIVSI(B}

COMMON KODE(2380)sIDAT(9052)sIT(10)

110JoloTIoIDSIELIFToKONILNTsLPVINCPoNVIIEXsIGT sNMBINAP
EQUIVALENCE (KOPoIT(1))o(KOASIT(2))s(IRN(SYLIZ(1))

EQUIVALENCE (IVeIVLI(1))

EQUIVALENCE (LACHIDAT(90+s1))o{LToIDATI{9002))

EQUIVALENCE (KODE(2)sDATA(L})
EQUIVALENCE (ICARDKODE(7))

EQUIVALENCE (IDS(1)oIDAT(1e1l})e(IDL(L1)sIDAT(162))
EQUIVALENCE (IRN(19)9ICR(1)Is(IRN(LT)oICB(1)) o (XNXoDATA(ST2))
X(IBLsIRNL29))

CALL DATSW(13e1SW)

GO TO(1219418)»ISW
CALL DATSW(OosJSW)
J=5=2%JSW

CALL DATSWI(1sIFC)

LM=1

11=0

LMX=6+1FC
IF(KOA)93851009102
IF(LAC)930+930+101
LB=90

GO TO 110
IF(LM)930+1183+91100
WRITE(Js1184)
FORMAT(1H)

LM=_M+1

KOA=KODE(I}

LB=KOA/100

GO TO(938+93841045108),4L8
IF{KOA=386)106+1059105
IVS{LM)=KOA+T79]

GO TO 107
IVS{LM)={KODE(ID+1)+]D+2%KOA=601)/2
IVL(LM) =1

GO T0 111
LB={D+KODE(ID)+KOA=401
LB=KODE(LB)
IF{LB)930+922+109
IFIIDS(LB))I93099225110
IVL(LM)=IDLILB)
IVS{LM}=]IDS(LB)
IF({LM=LMX)1214301+930
IF{1D=1193091249125
IF(L=1)938+12809125
IF({KODE(I+1)/512)12809127+1280
GO TO(900+128) e ISW
[=]+1

GO TO(121s1182)+15W
IF{LM)9005900s301
IF{11)356302935
IRN({1)=1

IRN(2)=10

IRN(3)=100

303

35
3é
37
38
39

40

41

3021

204

305
3050
3051

3052
3053
3060

3063

IRN{4)=1000

DO 303 mM=z5416
IRN{M)=0
IRN{61=19264
IRN(13)==15040
IRN(14)=16448
IRN(17)=16448
IRN(18)=24640
IRN{19)==4032
IRN(20)==3778
IRN({21)==3520
IRN{22)2=3264
IRN{23)==3008
IRN(24)2=2752
IRN(25)=2«2496
IRN(26)2=2240
IRN(27)12=1984
IRN(28)==1728
IRN(29)=216448

Il=1

INR=1V
IF(LM=11930939436

DO 38 K=29LM
IF(IVLIK)=INR) 38438437
INR=IVL(K)

CONT INVE

DO 328 K=1lsINR

DO 40 M=19105
IBF(M)=IBL
[STe=10=1FC

DO 327 MN=1sLM
ISTeIST+17=2%#1FC
IF{K=IVLIMN) Y419414327
NN=IST+11
NzIST+6%IFC=6

MM= 1

DO 3021 M=NsNN
IBF({M)=12Z{MM)
MMzMM+1

NS=1

CALL MOV (5729IVS(MN)+K=1s1}
IF{XNX)30493276305
XNXzm=XNX

NS=2

GO TO(305153050)91FC
XNX=XNX+6 00005
DG20e4342945%ALOG(XNX}
LL=DG

IS=1
1IF{DG)305293053,53053
18=2

GO TO(306083074)e1FC
M=fST+2
IBF(IST=11=ICBI(NS)
N=l1§

GO TO(306353064)415
NP=[L+]}

GO TO 3065

245

3064 IF (LL) 310163102.3101
3101 IBF(1ST+9)=24640
3102 NP=m=ii
3065 MM=NP
IF(MM=10) 3068930673067
3067 NL=MM/10
IBF(IST+10)eNL
MM=MM=1 O#NL
3068 IBF{IST+11)=MM
GO TO(30695307393198) N
3070 XNX=XNX/10000,
LislL=6
3069 IF(LL=3)3104310+3070
3072 XNX=2zXNX#*#10000,
LL=lL+4
3073 IF(LL+3)3072s3154315
3074 IF{LL+NS=8)30733244324
307 M=18T+6=LL
GO TO(3089314)elS
308 1B8F(M=1)1=a1CB(NS)
GO TO 3069
310 IG=IRN(LL+]1)
GO TO 3170
314 M=M«+2
IBF(IST+5)=ICBINS)
IF{LL+4)327+327s315
315 XNX=XNX%#10000,
1G=IRN(LL+4)
3170 NM=1
318 1DP=XNX
XNX=XNX=]}DP
[FF=1G
NN=gl92
DG=,00197601
DO 2183 N=lyla
IF{IDP=NN)3182+31849318¢4
3182 DG=DG/2e
3183 NN=NN/2
GO 7O 319
3184 XNX=XNX+DG
319 NN=IDP/IFF
18K=0
IF(NN=10)319943190+3190
3190 I1sK=10
KNK=M
IF(IFF=1G)3002+30009324%
3000 GO T0O(300163002) ¢NM
3001 KNK=2KNK=1
GO TO (3012+3010)slIFC
3008 IBF(KNK)=0
3002 KNK=zKANK=]
IF{KNK=IST=6#1FC+5)3005+3003,3005
3003 GO 70 (3012+3004)s1FC
3004 KNK=KNK=1
3005 IF(({IBF{KNK}+9)/9=1)3007¢300663007
3007 IF(IBF{KNK)=9)30099300843009
3009 GO TO (32453010)eIFC
3010 IF(KNK=IST=NS4+1)324+301)103011

246

3011

3012

3198
3006
3199

320
3200
3201

321

322
323

324

325
327

3271
3270
329
328
330
938
930

922
900

1BF (KNK=1)=1BF (KNK)
1BF (KNK) =1

GO TO 3199

KNK =KNK+1

IBF(KNK)=1

N=3

NPsNP+1

GO TO 3065

M=M+1
IF({M=15T=12)31999327+327
IBF (KNK) = [BF (KNK)+1
IBF (M) =NN=ISK
IDP=1DP=NN#*FF
IFF=IFF/10

MM+ 1

GO TO(3200+3201)¢1FC
IF({M=15T=8)322+327+930
IF(M=1ST=7)322+320+321
IF(M=15T=12)322+327+930
IF(IFF) 93093234319
XNX=XNX#10000,4

NM= 2

1G=1000

GO TO 318

N=1ST+11

DO 325 M=1STsN
IBF{M)=23616

CONT INUE

N=IsT+1l1

DO 3270 M=1sN
IF((IBF(M)+10)/10=113270+3271+3270
NN=1BF (M) +1

18F (M) = ICRENN)
CONTINUE
WRITE(Js329) (IBF (M) sM=1sN)
FORMAT(1H #105A1)

CALL DATSW(13415W)

GO TO(330+328)+1SW
CONTINUE

LM=0

Go To 121

IE=8

IE={E+8

IE=1E+22

RETURN

END

247

*LIST

PROGRAM LST
ALL

#ONE WORD INTEGERS

31

69

82

83

86

100

101

105

106
110
111

800

801
117

1170
200

248

SUBROUTINE LST

DIMENSION DATA(2)

DIMENSION IBUF(90)sICR(50)+sI1CPT(9596)9LO0OK(24)
COMMON KODE{2380) s IDAT(90+2)91T(10)

11 0JelLslloIDsIESIFToKOMNsLNToLPVINCPoNVIIEXeIGT eNMBsNAP

EQUIVALENCE (K2+KODE(2))s(K1sKODE(L))9(K3sKODE(3))
EQUIVALENCE(IBLYICR(IYI1) I (IQoIT(10))s(IPsIT(9))
EQUIVALENCE (ICPT(ls1)sKODE(1))
EQUIVALENCE (KODE(2)sDATALL1))
EQUIVALENCE (NPsKODE(4))

GO TO(3s391)slEX

WRITE(1s2)

FORMAT(41H #% LIST CANNOT BE USED WHILE EDITING ##%)
GO TO 501

CALL DATSWI13,15W)

GO TO(501e31)91SW

11sv=11

IM=t[=IP

11=4591
WRITE(LI'II)I(KODE(M)sM=131140) s (IT(N)sN=1926)
CALL DATSW(12+KKQ]

CALL DATSWI(0K)

KQ=5=2%K

IF(10)300+400469

I1=118V

READ(3'I1)}(KODE(K) oK=19IQ)
I1=2%KODE(1)+1

WRITE(KQ»82)

FORMAT(1H)

[X=}

1I=501

READ(S'II)(ICR(K) 9K=1950)

J20

GO TOlB6s101)sIX

I1=1+1

Kl=KODE(I)/256
K2=KO0DE(])=256%K]
{F(X1=50)100+1054106

JEJ+l

IBUF(JI=TICR{K1+1)
IF{k2=50)101+1059105

J=J+1

IBUF(JI=TCR(K2+1)}
1IF(1=1Q)869110+110

IxX=1

GO To 110

IX=2
WRITE(KQsll1){IBUF(K)sK=1sJ)
FORMAT(8Xs80A1)

GO TO (800s117) +KKQ
WRITE(2s801){IBUF(K)eK=1s.)
FORMAT({80AL)

CALL DATSW(13sISW)

GO TO(502s1170)s1ISW
IF(1=10)834200:200
WRITE(KQs82)

CALL DATSW(2sK)

GO TO (711712)sK

711 i1=1pP
READ(3'II)(KODE(K) sK=1sIM)
DO 701 K=le7
WRITE(3s700)KODE(K)
700 FORMAT(6Xs16)
701 CONTINUE
CALL DATSW(13,1SW)
GO TO(5004702) s15W
702 DO 703 K=8,K1
KOP=KODEL(K)} /512
KOA=KODE (K)=KOP%*5]12
WRITE{3+704)KOPKOA
704 FORMAT(216)
703 CONTINVE
M=K1+1
CALL DATSWI(13415W)
GO TO(500s705)¢ISW
705 DO 708 K=MysK2
708 WRITE(3s700)KODE(K)
IF{K3=K2)715+715s714
714 N={K2+21)/2
KQ=K3/2
CALL DATSW(13,iSW)
GO TO(500+707) s15W
707 DO 710 M=NsKQ
710 WRITE(3+709)DATA(M)
709 FORMAT(F12s4)
715 NN=(IM=K3)/4
CALL DATSW(13,1I5W)
GO TO(5006713)1I5W
T13 IF(NNIT1297125716
716 K=K3
DO 718 N=1sNN
Ll=]
DO 717 L=1,3
KQ=K+L
MaKODE(KQ) /256
JEKODE (KQ)=256%M
LOOK (L1)=ICRIM+1)
LOOK (L1+41)=ICR(J+L)
717 LlsL1+2
WRITE(39901){LOOK(KQ)sKQ=146)
901 FORMAT{6X#6A1)
718 K=K+4
712 GO TO 500
300 CALL DATSWI(2sKkX)
IF (NCP) 30193014303
301 WRITE(KQs302)
302 FORMAT(30H THERE ARE NO PROGRAMS DEFINED)
GO TO 500
303 1l=4
READ(3*II)({ICPTI{JsK)eK=196) sdaloNCP)
[1=501
READ(STIII(ICRIK) sK=14950)
WRITE(KQs82)
GO TO(3055304) sKX
304 Ma(NCP+3) /4
iP=4

249

305

306

307

308
309
310
311
312
313
314
315
316
502
500
501

400

401

402

403

404

GO TO 306

M=NCP

1P=]

DO 316 N=1lesM

L1=0

DO 309 NN=lsiP

MMaN+ (NN=]1)#*M
[F{MM=NCP)307+307+310

DO 308 L=1+3

Li=L1+2

JaICPT(MMsL) /256
KsICPT(MMsl.) =256%J
LOOK(Ll=1l)=ICR(J+1)
LOOK(LLY=ICR(K+1)

CONTINUE

GO TO{(3119313) sKX
WRITE(KQs312)(LOOK(K)sK=106) o (ICPT(MMeJ) oJd=beb)
FORMAT(9Xs6A19318)

GO TO 315
WRITE(KQe314}(LOOK(K)eKmlsll)
FORMAT (99X 96A1910X96A1910X96A1210Xe6AL)
CALL DATSW(13,I5W)

GO TO(502s316)+1ISW

CONTINVE

WRITE(KQsB2)

I1=4591

READ(IVII)(KODE(M) sM=21s1140)9{1ITIN)sN=1s26)
1E=4

RETURN

Ji=a(1P=1)%242100
READ(SPITI)ISTTeNCH
IFINCH)S500+5004401

[I=1S8TT
READ(S5*IT)(KODE(K) sK=1l sNCH)
M=l

K=l

WRITE(KQ#82)

DO 403 N=)1oNCH
IF(KODE(N}=23387)1403¢4029403
KzN=1
WRITE(KQe404){KODE(J) s JdxMeK)
MaN+1

CALL DATSW(13s15W)

GO TO(502+403)s18SW

CONTINUVE
WRITE({KQs404) (KODE(J) s JuMeNCH)
FORMAT(8X940A2)

GO 70 502

END

250

KYBROD

ARG

RTRN

ENT
BSS
Lox 1
STX
MDX
STX
Lo L
LIBF
BsC L
END

NN

SUBPROGRAM KYBRD

KYBRD
1
KYBRD
ARG+1
1
RTRN41
0
TYPAM
0

251

252

SAV12
SIX
COUNT
c1o0
cs51
TYBLK
NEWL2

LOOP1

CKDEL

TYPAM

INTLI

INTL2
REWT

EDIT

L1IBR
ENT
BSS
bC
BSS

DC

DC

LD

S$70
BSt
MDX
STX
LDX
Lo

$70
MDX
BSI
MOX
MDX
MDX

STO

MDX L

MDX
MDX
MDX
BOSC 1

LD L

STO L
LDX
LD

BSC
LDX
LD

BSI
MDX
MDX
LDX
LD

BS1I

N o= b

[

TYPAM
1

6

1

10

51
/2100
C51

0
CKBF
=1
LBFAD
6

C10

0

-1
CKBF
-1
LoOP}
INTL2
BFCHC
LCHCT
BFCHC

DELINs=]

INTLL
INTL2
*42

0
BFADD
/7000C
SAV12
10CC2
/000C
BFADD
LBFAD
SIX
BFCHC
Z2EROQ
LCHCT
ZERO
DELIN
LCHCT
SIX
COUNT
LBFAD
1

2

TWO
/75E9
o+

1
SELCT
sST0
=]
LOOP
8
TYBLK
STO

SUBPROGRAM TYPAM

RETURN
BUFFER ADDRESS

BUFs CHARe COUNT
LINE CHARes COUNT

$/%% INDICATOR
LINEs CHARe COUNT

LooP

CKBF

LBFAD
BFCHC
C50
EOLS
c297
BFADD
TWO
INTRP

RESET
CKLIN

EOF

SAVE

EOS

10CC

SELCT

10CC2

SENSE

MDX
MDX
Lo

STO
BS1
MDX
MDX
MDX
DC

MDX
Lo

BSC
MDX
ple
ol
DC
DC
0C
DC
DC
DC
X10
BOSC
X10
LD
SLA
BOSC
SLA
BOSC
STO
Lo
BOSC
BOSC
LD
BOsC
BOSC

§TO
Lo

STO
LD
STO
MDX
MDX
LDX
STX
BSI
MDX
BSS
ple
bC
bl
DC
oC

DC
DC

2

~r

~r

-]

EDIT

0

2

GETTY
COUNT s=]
LOOP
READ

0
BFCHCs 1
BFCHC
C297
CKBF s+
RESET

0

0

50

0

297

0

2

0

SENSE
STOs+2
10CC

0

12

CHAR =+
1
CHAR29»2
EOLS
DELIN
CKDEL s2=
REWT»Z
EOLS
NEWL202Z+
EQOS s+
C50

0

BFCHC
ONE
/T15F4
SAv12
/000C
TYPAM+]
BFCHCe 1
45

1

GETTY
EQOF

0

0

/0A00
/8100

~/0C00

INTRP
70900
0

/0F01

LINE BUFFER ADDRESS
BUFFER CHARe COUNT

EOL/EQOS
BUFFER ADDRESS
INTERRUPT ROUTINE

READ CHARACTER

DATA CHARACTER
CHECK FOR CARRs RETURN

BRANCH IF CRe

253

LCHCT DC 0 LINE CHARe COUNT
ZERO DC 0
ONE DC 1
MONE DC =1
DELIN DC 0 5/%%
STO BSS 1
$70 INTRP
BSI TNRDY
X10 10CC2
ROWRT WAIT
MDX o2

CHAR LDX 2 51
CHAR1 LD L2 HOLTB

EOR lo

BSC L MATCHoy+=
MDX 2 =1

MDX CHAR1

CHAR2 LDX 2 11
MATCH MDX 2 =1

MDX *

STX 12 1

BSI GETTY
TYPELl LD 11

S C48

BSC L DELy+=

S TWO

BSC L BKSPyt=
UPDT MDX L LCHCTs1

BS1 CKBF
LD LCHCT
S C74

BSC L NEWL29=-
READ STX 1 I0CC

BSI TNRDY

X10 SELCTY

MDX RDWRT
GETTY BSS)

MDX 1 =1

Lo L 2

SRT 1

STO L 2

LD ZERO

SLT 1

BSC L SECs»Z
LD L2 TYPTB

SRA 8

MDX SAME
SEC LD L2 TYPTB

SRT 8

LD ZERO

SLT 8
SAME SLA 8

BSI sTO

BSC I GETTY
DEL LD 1 2

EOR C48
BSC Z

LD MONE
A TwO

254

STO DELIN

MDX UPDT

BKSP LD DELIN
BSC $oo
S ONE
STO DELIN
MDX 11
LD LCHCT
S ONE
BSC L READy+Z
STO LCHCT
MDX L BFCHCs=1
MDX 11
LD 10
EOR C48
BSC L READs2Z
LD DELIN
S ONE
BSC pan
S ONE
§$TO DELIN
MDX READ

C48 DC 48

C4 DC 74

TNRDY DC Yoo 3t
X1lo SENSE
SLA 5
BSC I TNRDYs=
WAIT
MDX TNRDY+1

TYPTB DC /C4FC 091
DC /D8DC 2193
DC /FOF&4 495
DC /D0D4G 697
DC /E4EQ 849
DC /213¢C BLANKsA
DC /181C BeC
DC /3034 DsE
DC /1014 F G
DC /2420 Hel
DC /7C58 J oK
DC /75C7T0 L oM
DC /7450 N»O
DC /5464 PsQ
DC /6098 RS
DC /9CB0O Tl
DC /B490 VoW
DC /94A4 XY
D¢ /A0Dé Zo¥
oC /BCDA / o+
DC /8444 X1
DC /C2FE =g
DC /F600 Yoo
DC /80D2 9 3SEMICOLON
hld /40E6 $e!
DC /C000

HOLTB EQU Yom]
DC /2000 0
DC /71000 1

255

256

/0800
/0400
/0200
/0100
/0080
/0040
/0020
/70010

/9000
/8800
/8400
/8200
/8100
/8080
/8040
/8020
/8010
/5000
/4800
/4400
/4200
/4100
/4080
/4040
/4020
/4010
/72800
/2400
/2200
/2100
/72080
/2040
/2020
/72010
/4220
/3000
/80A0
/4000
/8000
/00A0
/8120
/4120
/8420
/2420
/40A0
/4420
/0120
/0420

ctHANe @ v~ PO I AFANENIXESCHNAOADVOZICRXKC=TIOMMOUNDT>» Voo UpP LN

EMICOLON

SERCH

NOM

LPOl
LIM

LPO2
TAB

coL

RTN

LOOK
ZRO
ONE

ENT
DC
LDX
LD
STO
LD
§TO

$TO
MDX
STX

STO
LD

S$TO
LDX
MDX
LD

BSC
STO
MDX
LD

EOR
BSC
Lb

STO
MDX
MDX
8SC
EQU
EQu
DC

DC

END

[NN N N N BN

r recor

rrrrr rrrr
N -

SERCH
SERCH
TAB+1
COoL+1
LIM+]

RTN+}
2RO

ZRO

Lel
ONE
LP02y2

RTN
LOOK

NOMy 2

=1
LPO2
0

/T75F3
/701C

SUBPROGRAM SERCH

257

SUBPROGRAM AJS
#IST ALL
#*ONE WORD INTEGERS
SUBROUTINE AJS (LASLTOSLTN}
COMMON KODE(23BO0)sIDATI9062)sIT(10) s
110JoLoIlelDsIEsIFTsKONSLNTosLPVINCPosNVIIEXs IGT sNMBoNAP
EQUIVALENCELJSsITIO) o (JUNSIT(10))
fFILAYS309351
1IF {(LTO=LTN) 259004
JSmLA
JN=L.TO
CALL FRE
IF(IEYS001939900
3 LA=Q
LTO=0
IF (LTN)9305900430
30 JINsLTN
CALL GET
1IF(JS1900090045
4 JSEA+LTN
JN2LTO=LTN
CALL FRE
IF(1EY1900440,900
40 IF{LTN)93094146
41 LA=0
L. TO=0
RETURN
5 LA=(JS+1)/2
6 LTO=LTN
900 RETURN
930 1E=30
RETURN
END

N

258

*LIST

SUBPROGRAM GET
ALL

#ONE WORD INTEGERS

102

10
11

12
13

14
15

935
929
926

900

SUBROUTINE GET

DIMENSION IspP({2)

DIMENSION IPP(2)

COMMON KODE (2380)+IDAT(90+2)01T(10)
1150l el 1o lDsIERIFToKONSLNT oLPVINCPINVIIEXsIGT sNMBNAP
EQUIVALENCE (JSeIT(9))s(JINsIT(10})
EQUIVALENCE (ISP(1)eXOCE(2))e(IPP(1)sKODE(1))
EQUIVALENCE(IPPXoIPP(1141)})
IF {UN) 92692651
IF{LNT=JUN)92951024102

K=l

iIF (IPPX}) 935392942

JS=1141

M= JS

JS=1IPP(M)

IF {JS) 9353845
IF(ISPIM)=JUN)As 76
ISP{MI=a]SP(M)=JN
IPP(M) =2% UN+JUS

MslIppP(M)

IPP(MI=IPPlJS)
1SP(M)=lSP(JUS)

LNTaUNT=JN

RETURN

GO TO (99159295 9K

JS=114l

M= JS

JSmIPP(JS)

N=IPP(JS)

IF (N) 935414412

IF (N=JS=2%#]15P(M)) 935413410
1SP(M)=]SP(MI+ISP(JS)
IPP{JS)=2IPP(N}
1SP(JS)=ISP(N)

K=2

GO TO 11

GO TO (1592)9K

CALL GARB

K=3

1F(JS)1900990042

1E=6

IE=[E+3

IE=lE+26

JSa=]

RETURN

END

259

10S
LNT
10L
1SPX
1PPX
179
1E
IFT
ISP
1PP
IDSP
IDLP
TEMP
€573

ONE
ZRO
KK
GARB

L150

L151

LOl6

Lo17

L020
L021

260

ENT
EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQuU
EQU
DC

BSS
DC
BSS
BSS
DC
DC
BSS
BSS
LD

STO
CALL
0C
DC

STO
LD
STO

STO
LD
BSC
BSC
MDX
MD X
MDX
LD
STO

§T0
LD

BsC
BSC

BSC
BsC
LD
BSC
ST0
LD

BSC
BsC
STX
MDX
MD X
LO

L

| ol

SUBPROGRAM GARB

GARB

/T6B4
/T15ED
/T65A
/788A
/7888
/T5F7
/T5F0
/15€EF
/TFFE
/TFFF

ONE

KK

SHF

KK

€90
€573

M

ZR0O

N

KK

1

iIDS
L930y+2
L1512
Nel

1

L150
2RO
TEMP

KK

1

IDS
LO21e+=
L9930+
M
L.021s42Z
L0234+
TEMP
LO20g=
2

iDs

IDS
L021sZ+
L9304+
TEMP

1

LO17
TEMP

ARG1
ARG2

1.023

RTN
L949
L930

'MONE
C90
c1177

BSC

STO
LD

STO
CALL
OC
DC
DC

ST0
LD
STO
LD

$TO
LD

STO

BSC
BsC
LD

SLA

STO
STO
LD

§TO

BSC
Lo

ST0
LD
ST0
ST0
CALL

DC
BSC
MD X
MD X
LD
STO
MDX
DC
DC
DC
END

L

L1
L1

rr

rr & rrr

s pus

[ol]

L930¢~
1DSP
ARG1
I0LP
TEMP
ARG2
MOV
M

0

0
TEMP
1

M
ins

M

IDL

M

N

ONE

N

KK
LOl6s+2
L930,2
M

1

ONE
I79
1PPX
Cli7?
M
I1SPX
LNT
L9492
ONE
1T9

1

2RO
1PP
ISP
SHF
C90
KK
GARB
IEs 19
1Es30
MONE
I79
RTN
-]

90
1177

261

FRE

L0011

L0002

1.009%

LO11

L0112

RTN
L9116
L915

Cc572
C605
Cllal
ONE
KK

JA

15P
1PP

LNT

262

ENT
BSS
LD

BSC

BSC

$70

| ~r

FRE

1

N

572
L9916+
K

C605
LO1l6s=2
N

1

ONE

JA

ONE

JA

2
Clial
KK

ONE

KK

1

iPP

KK
LO1l5e+2
L0120+
JA
LOO0G 2+
L9166+
KK

1PP
ISP
ISP

JA

1PP

K

ISP
LNT

K

LNT
FRE
IEs]
1E£¢35
RTN
572
605
1141

1

0

0
/15F7
/T5F6
/T7FFE
/IFFF
/15F0
/T15ED

SUBPROGRAM FRE

SUBPROGRAM MOV

#LIST ALL
#ONE WORD INTEGERS

SUBROUTINE MOV (LAsLBsLC)

COMMON KODE(2380)91DAT(9002)9IT(10)s
110JoLol1aIDsIESIFToKONsLNT oLPVINCPsNVSIEX2IGToNMB e NAP

IF(LA=LB)2¢3¢2

2 LD=2# L A=)
Ma2#L B=]

M=24#(B=1

Nz2#{LB+LC=]1)

DO 1 K=MpN

KODE(LD)=KODE (K)

LD=LD+]

RETURN

END

L -2

SUBPROGRAM SHF

*LIST ALL
#ONE WORD INTEGERS
SUBROUTINE SHF (LAsLB)
COMMON KODE(2380) 9 IDAT(90+2s1T(10)
11eJolo I oIDsIEWIFToKONSLNTsLPVINCPINVIIEXsIGT sNMBoNAP
DO 1 K=le2
Mz IDAT(LAK)
IDAT(LASK)=IDAT(LBK)
1 IDAT(LBsK)=M
RETURN
END

PROGRAM INTLS3

#LI1ST SOURCE PROGRAM
#10CS(1132 PRINTERWDISK)
*ONE WORD INTEGERS
DIMENSION INT(3)
DEFINE FILE 3(307209s1sUsll)
INT(1)=0
INT(2)=580
INT(3)=0
[1=1
WRITE(3'II)INT
i11=]
READ{3'II)INT
WRITE(391) (INTIK)sK=103)
1 FORMAT(1H s315)
CALL EXIT
END

263

PROGRAM ALTS

*#LIST ALL
#ONE WORD INTEGERS
#10CS{DISK#1132 PRINTER+CARD)
DEFINE FILE 5(56%4000l0Usll}
DIMENSION I0P{100¢4)sKEEP{6)sICR{S0)91ITB(100)KCH(40)
DIMENSION LRPT115)
READ(2¢30)(ICR(I)VsI=1450)
30 FORMAT({50A1l)
CALL DATSW (109M22Z)
GO TO (800s500)0M22
800 I1=1
READ(SYITI{(IOP(JsK)sKRLob)a mls100)
GO TO 99
500 CONTINUE
DO 29 M=19100
DO 29 N=1,3
29 10P(MsN)=2570
99 READ(2+100)IPNs (KEEP(IK)eK=106)s1IP4
100 FORMAT(1I342X0e6A1e8Xs14)
WRITE(35100)IPNe(KEEPIK)sK=]196) P4
IF (1PN) 12091204101
101 DO 104 K=1s6
LL=KEEP(K)
DO 103 N=1937
IF (LL=ICRIN)) 10341025103
102 KEEP(K)=N=]
GO TO 104
103 CONTINUE
WRITE(3,1035)
1035 FORMAT(38H #¥%#%%%THE ABOVE NAME 1S INVALJID#*%%%#*)
GO TO 99
104 CONTINUE
DO 105 M=1l93
MK=M+M
105 10P({IPNoM)=256%KEEP (MK=]1)+KEEP(MK)
[OP({IPNe&)=]P4
GO TO 99
120 11=1
WRITE(S'III((IOPIJoK}oK=Ll94) 9 =19100)
GO TO {119550)9M22Z
550 CONTINUE
CALL DATSW(O»K)
GO TO(31e32) 9K
31 Ils]
READ(S'IINLLIOP(JoK) oK21l04) 9 =14100)
WRITE(3s)1)((IOP(JoK)oK=104) e J=1060)
1 FORMAT{(416)
32 LRPT(1)=430
LRPT(2)=264
LRPT(3)=386
LRPT{4})}=268
LRPT{(5)=430
LRPT(6)=264
LRPT(7)=430
LRPT{8}1=261
LRPT{9)=387
LRPT{(10)=268
LRPT(11)=218
LRPT{12)=2265
LRPT{13)=430

264

11

LRPT(14)=2262
LRPT(15)=265

READ(2930) (KCHIK} sK=18934) s (KCH(K)sK=5417)

KCH(1)=1

KCH{2)=10

KCH(3)=100

KCH(4)=1000

11=401
WRITE(S'III(LRPT(I)elumlel5)
I1=467

WRITE(S'II)(KCH(K) oK=1934)9(ICR(K)8K=1550)

112701

DO 2 K=13100

ITB{K)=0

CALL DATSW{1,1D0S)

DO 9 J=1s70

READ(293) (KCH(K) osK=1940)
FORMAT (40A2)

DO 4 K=1940
IF(KCH(K)I=16448)40504
CONTINUE

KaKe]

1T8(Ji=1!

IF(K)Bs896

WRITE(S'IL) (KCH(M) gMalyK)
GO TO(6099)41DS
WRITE(397)Jo{KCH(M)sMulpb0)eITB(J)
FORMAT(1H #12¢2H 940A292H #15)
GO TO 9

GO TO(B80»9)41IDS
WRITE(3s7)J

CONTINUE

1TB(J)=11

[1=601

WRITE(S'II)(ITB(K} sK®m19100)
CALL EXIT

END

265

266

#LIST

PROGRAM ALTS5A

SOURCE PROGRAM

#10CS(1132 PRINTERsCARDSDISK)
#ONE WORD INTEGERS

S W

[+ N]

O O -3

17
i8

10
11
19
12

13

14

16

DIMENSTION ICT(5602)e1CK(B800)s1ICAL4])
DEFINE FILE St6400919eUsll)
DO 1 K=zle56

ICT(Kel)=0

1CTI{Ks2)=0

{I=2212

DO 14 K=1456

ICNT=0

=}
READ(Z2e3){1CAILIsL=1040)
FORMAT (40A2)

Mz4]

MaM=]l

IF(M)505¢7

IF(ICNT1401446

M=g}

GO T0 11
IF(ICAIM)=16448180498
IF{ICA(M)=23387)10+9910
1e2

M=M=}

IF{MI179+17019
IF(ICNT)I14914918
ICNT=ICNT=1

GO T0 13

MaM+]

ICA{M}=23387

DO 12 L=14M

ICNTsICNT+]
ICK(ICNTImICA(L)

GO TO(2913)s!

1CT(Kel)z 1L

ICT(Ke2)=ICNT
WRITEISYIIY{ICK(M) M=l ICNT)
CONT INUE

11=2100
WRITE(SBIIINCLICTIKeMIeM=102)0K=1456)
WRITE(3018)LICT{(KoM) M=) 92)9sK21956)
FORMAT(1H #215)

CALL EXIT

END

HOL T8

HOLTB

/2000
/1000
/0800
/0400
/0200
/0100
/0080
/70040
/0020
/0010
/4000
/8420
/8100
/80A0
/8000
/00A0
/4120
/8120
/2420
/70120
/3000
/4220
/4420
/8220
/40A0
/0420
/0220
/9000
/8800
/8400
/8200
/8080
/8040
/8020
/8010
/5000
/4800
/4400
/4200
/4100
/6080
/4040
/4020
/4010
/2800
/2400
/72200
/72100
/2080
/2040
/2020
/2010

X=2

PROGRAM HOLTBEB

m
r~
>
z
x

MPERSAND

POSTROPHE

O ENPe ~—~RP>+Me | DOICUVLWVN~O

LESS THAN
SEMI COLON
POUND SIGN
AT SIGN

NAXELCCNOLIODVOZZIrRLIOMONDD>

267

268

EBCTB
/1611
/1581
/2503
/1405
/3509
/0541
/74021
/FOC4
/F1lFC
/F208
/F3DC
/F4F0
/F5F4
/F6D0O
/F1D4
/F8E4
/F9EQ
/6084
/4800
/C534
/4EDA
/5044
/7EC2
/5DF6
/4DFE
/6880
/TDE6
/7618C
/5CD6
/5840
/4CDE
/5ED2
/78C0
/7C04
/C13C
/C218
/C31C
/C430
/C610
/CT714
/C824
/€920
/017C
/0258
/D35C
/D470
/D574
/D650
/D754
/D864
/D960
/E298
/E39C
/E4BO
/E5B&
/E690
/ET94

PROGRAM EBCTB

BACKSPACE

CARRIER RETURN

LINE FEED

SHIFT TO PRINT BLACK
SHIFT TO PRINT RED
TABULATE

BLANK

MPERSAND

POSTROPHE

B ANPe ~~ntD>d+Me | OO~NOUVPFPWNLO

LESS THAN
SEMICOLON
POUND SIGN
AT SIGN

HHELSCHOVOAAOVOZIrRL—~TITOMOUONDOD >

DC /EBA4 Y

DC /E9AQ Z
X D¢ 0
EBCTB EQU X2

END

269/270

